scholarly journals PRODUCTION CHARACTERISTICS OF SESAME GENOTYPES UNDER DIFFERENT STRATEGIES OF SALINE WATER APPLICATION

2020 ◽  
Vol 33 (2) ◽  
pp. 490-499
Author(s):  
GEOVANI SOARES DE LIMA ◽  
CASSIANO NOGUEIRA DE LACERDA ◽  
LAURIANE ALMEIDA DOS ANJOS SOARES ◽  
HANS RAJ GHEYI ◽  
RAILENE HÉRICA CARLOS ROCHA ARAÚJO

ABSTRACT In semiarid areas, the scarcity of water with low salt concentration associated with irregular precipitation becomes a limiting factor to ensure agricultural production. In this context, the objective of this study was to evaluate the growth and production of sesame genotypes under different strategies of use of saline water. The experiment was conducted under protected environment conditions, using a randomized block design in a 6 x 2 factorial scheme, and the treatments consisted of six strategies for the use of saline water in the different stages of plant development (SE = irrigation with low-salinity water throughout the cultivation cycle; VE, FL, FR, VE/FL and VE/FR - respectively, irrigation with high-salinity water at the vegetative stage, flowering, fruiting, vegetative/flowering and vegetative/fruiting) and two sesame genotypes (BRS Seda and BRS Anahí), with 4 replicates. Irrigation with high-salinity water (ECw = 2.7 dS m-1) during the vegetative, flowering and fruiting stages did not compromise sesame production. There were reductions in sesame growth when irrigation with high-salinity water was continuously applied at the vegetative/flowering stages and in sesame production when it was applied during the vegetative/flowering and vegetative/fruiting stages. The greater growth of BRS Seda sesame plants resulted in an increase in the total number of fruits and in the total seed weight.

Irriga ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 42-55
Author(s):  
André Alisson Rodrigues da Silva ◽  
Cassiano Nogueira de Lacerda ◽  
Geovani Soares de Lima ◽  
Lauriane Almeida dos Anjos Soares ◽  
Hans Raj Gheyi ◽  
...  

MORFOFISIOLOGIA DE GENÓTIPOS DE GERGELIM SUBMETIDOS A DIFERENTES ESTRATÉGIAS DE USO DE ÁGUA SALINA     ANDRÉ ALISSON RODRIGUES DA SILVA1; CASSIANO NOGUEIRA DE LACERDA1; GEOVANI SOARES DE LIMA1; LAURIANE ALMEIDA DOS ANJOS SOARES1; HANS RAJ GHEYI1 E PEDRO DANTAS FERNANDES1   1 Unidade Acadêmica de Engenharia Agrícola, Universidade Federal de Campina Grande, UFCG, Rua Aprígio Veloso, 882 - Universitário, Campina Grande, PB. E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected].     1 RESUMO   Objetivou-se com este trabalho avaliar as trocas gasosas e o acúmulo de fitomassas de genótipos de gergelim sob estratégias de uso de águas salinas. A pesquisa foi conduzida em casa de vegetação, em delineamento de blocos casualizados em arranjo fatorial 6 x 2, sendo seis estratégias de uso de águas salinas aplicadas nas diferentes fases fenológicas das plantas (SE-irrigação com água de baixa salinidade durante todo ciclo de cultivo; VE - irrigação com água de alta salinidade na fase vegetativa; FL - na fase de floração; FR na fase de frutificação; VE/FL - nas fases vegetativa/floração; VE/FR - nas fases vegetativa/frutificação) e dois genótipos de gergelim (BRS Seda e BRS Anahí), com quatro repetições. Foram aplicadas água com alta salinidade (2,7 dS m-1), em alternância com água com baixa concentração de sais (0,3 dS m-1), em fases diferentes do ciclo. A irrigação com água de 2,7 dS m-1 durante a fase de floração, e nas fases vegetativa/floração, não comprometeu a condutância estomática, transpiração e taxa de assimilação de CO2 dos genótipos de gergelim. A salinidade da água de 2,7 dS m-1 quando aplicada nas fases vegetativa/floração prejudicou o acúmulo de fitomassa pelas plantas de gergelim.   Palavras-chave: estresse salino, Sesamum indicum L., qualidade de água.     SILVA, A, A, R. da; LACERDA, C. N. de; LIMA, G. S. de; SOARES, L. A. dos A.; GHEYI, H. R.; FERNANDES, P.D. MORPHOPHYSIOLOGY OF SESAME GENOTYPES SUBMITTED TO DIFFERENT STRATEGIES FOR THE USE OF SALINE WATER     2 ABSTRACT   The objective of this study was to evaluate gas exchange and phytomass accumulation of sesame genotypes under different strategies for the use of saline water. The research was conducted in a greenhouse, in a randomized block design in a 6 x 2 factorial arrangement, with six strategies for the use of saline water applied in the different phenological phases of the plants (SE - irrigation with low salinity water throughout the cultivation cycle; VE - irrigation with high salinity water in the vegetative phase; FL - in the flowering phase; FR - in the fruiting phase; VE/FL - in the vegetative/flowering phase; VE/FR - in the phases vegetative/fruiting) and two sesame genotypes (BRS Seda and BRS Anahí), with four replicates. Water with high salinity (2.7 dS m-1) was used, alternating with water with low salt concentration (0.3 dS m-1), at different stages of the crop cycle. Irrigation with water of 2.7 dS m-1 during the flowering phase, and in the vegetative/flowering phases, did not compromise the stomatal conductance, transpiration and CO2 assimilation rate of sesame genotypes. The water salinity of 2.7 dS m-1 applied in the vegetative/flowering phases impaired the accumulation of phytomass by sesame plants.   Keywords: saline stress, Sesamum indicum L., water quality.  


2012 ◽  
Vol 42 (10) ◽  
pp. 1731-1737 ◽  
Author(s):  
Felipe de Sousa Barbosa ◽  
Claudivan Feitosa de Lacerda ◽  
Hans Raj Gheyi ◽  
Gabriel Castro Farias ◽  
Ricardo José da Costa Silva Júnior ◽  
...  

Irrigation with water containing salt in excess can affect crop development. However, management strategies can be used in order to reduce the impacts of salinity, providing increased efficiency in the use of good quality water. The objective of this research was to study the effects of use of high salinity water for irrigation, in continuous or cyclic manner, on vegetative growth, yield, and accumulation of ions in maize plants. Two experiments were conducted during the months from October to January of the years 2008/2009 and 2009/2010, in the same area, adopting a completely randomized block design with four replications. Irrigation was performed with three types of water with electrical conductivities (ECw) of 0.8 (A1), 2.25 (A2) and 4.5 (A3) dS m-1, combined in seven treatments including the control with low salinity water (A1) throughout the crop cycle (T1). Saline waters (A2 and A3) were applied continuously (T2 and T5) or in a cyclic way, the latter being formed by six irrigations with A1 water followed by six irrigations by eitherA2 or A3 water, starting with A1 at sowing (T3 and T6) or 6 irrigations with A2 or A3 water followed by 6 irrigations with A1 water (T4 and T7) . The use of low and high salinity water resulted in lower accumulation of potentially toxic ions (Na and Cl) and improvement in the Na/K balance in the shoots of maize plants. Application of saline water in a cyclic way also allows the substitution of about 50% of water of low salinity in irrigation, without negative impacts on maize yield.


2013 ◽  
Vol 13 (2) ◽  
pp. 265-272
Author(s):  
Eunjeong Mun ◽  
Sangyoup Lee ◽  
Inhyuk Kim ◽  
Boksoon Kwon ◽  
Heedueng Park ◽  
...  

Biofouling caused by the deposition or growth of microorganisms on the membrane surface is one of the major concerns in nanofiltration (NF) and reverse osmosis (RO) processes. Assimilable organic carbon (AOC) has been a useful index to assess the growth potential of bacteria. In the case of drinking water, the AOC assay method has been widely applied to estimate growth or regrowth potential of bacteria in distribution and storage systems. However, studies on AOC measurement for high salinity water samples such as brackish water and seawater are rather scarce. The objective of this research is to investigate the influence of water salinity on the conventional AOC assay method. AOC samples with different salt concentrations were prepared by varying NaCl concentration from 0 to 35,000 mg/L, while the acetate concentration was held at 100 μg/L. The number of cells produced in water samples was measured by the heterotrophic plate count (HPC) method using R2A agar. The result showed that the cell production of Pseudomonas fluorescens strain P17 and Spirillum strain NOX decreased with increasing salinity. Especially, the growth of Spirillum strain NOX was noticeably influenced by water salinity. To further observe the relation between acetate concentration and cell production in high salinity water, organic-free saline water samples were prepared by spiking NaCl in deionized (DI) water. The organic-free saline water samples were enriched with acetate of which concentration was varied to be 0–1,000 μg/L (as acetate). Also, P. fluorescens strain P17 was adjusted to high total dissolved solids (TDS) condition prior to being injected into the saline water samples. The result demonstrated that the amount of microorganisms increased with increasing acetate concentration. Although AOC measurement of saline water using Spirillum strain NOX seemed unacceptable, it was suggested that P. fluorescens strain P17 has the possibility to be used in measuring AOC in saline water. Moreover, the yield factor was altered as a result of reflecting salinity impact as the growth number of P. fluorescens strain P17 was unstable with high saline condition.


2018 ◽  
Vol 777 ◽  
pp. 554-558
Author(s):  
Vu Hai Dang ◽  
Manoon Masniyom

The effect of the high salinity water on the compressive strength of mine backfill was studied. Two types of salinity water: saturated and unsaturated brines were employed to mix with mine backfill materials, and the results were compared. The one with saturated brine had high salt content of 400 g/l while the other had 200 g/l. The results showed that compressive strength decreased with increasing salt content. The mine backfill with high salt content (saturated brine) exhibited the poorest compressive strength in which its strength decreased to approximately 50-70 % of the original strength gained from the backfill samples based on water without salt. Additionally, the optimal saline water solid ratio was 0.2.


1964 ◽  
Vol 21 (1) ◽  
pp. 45-55 ◽  
Author(s):  
N. J. Campbell

During the 1955 cruise of HMCS Labrador to the Canadian Arctic an unusual mass of cold saline water was discovered in Foxe Basin and Channel. Temperatures as low as −1.90 °C were observed in association with salinities of the order of 33.75 and 34.00‰.An explanation of the origin of this water is presented and compared with additional studies conducted by the author in the same area in 1956.


Author(s):  
Geovani Soares de Lima ◽  
Adaan Sudario Dias ◽  
Leandro De Pádua Souza ◽  
Francisco Vanies da Silva Sá ◽  
Hans Raj Gheyi ◽  
...  

Due to the scarcity of water in the semi-arid region of Northeast Brazil, in both quantitative and qualitative terms, the use of saline water in agriculture should be considered as one alternative for irrigated agriculture. This study therefore aimed to evaluate the photosynthetic pigments, growth and production of West Indian Cherry as a function of irrigation using waters with different salinity levels and potassium (K) fertilization, after grafting. The study was carried out in drainage lysimeters under greenhouse conditions, in a eutrophic Regolithic Neosol with sandy loam texture, in the municipality of Campina Grande, PB. The experiment was set in a randomized block design, to test two levels of irrigation water electrical conductivity - ECw (0.8 and 3.8 dS m-1) and four K2O doses - KD (50, 75, 100 and 125% of recommendation), with three replicates. The dose relative to 100% corresponded to 79.2 mg K2O kg-1 of soil. Irrigation with high salinity water stimulated the biosynthesis of chlorophyll b and carotenoids, while the chlorophyll a content and the growth of the cherry were reduced markedly in the post-grafting phase. The harmful effects of salinity on the total number of fruit and fresh mass of West Indian Cherry fruit were minimized with potassium fertilization.


1983 ◽  
Vol 2 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Simon Robson

Abstract. 47 Species of radiolaria have been identified from 30 surface sediment samples collected along transects across the continental margin of northern Namibia between the Kunene River and Walvis Bay. From the distribution patterns of the 24 most abundant species, it was possible to identify a warm water, high salinity population and a cold water, low salinity population. The distribution patterns of each population shows a close correspondence with the known positions of the Angola Current (warm, high salinity water) and the Benguela Current (cold, low salinity water) respectively. Two other trends are apparent from the overall radiolaria distribution; dilution of the nearshore samples by terrigeneous input and a strong preference for open ocean conditions. There is no apparent correlation with upwelling.


2011 ◽  
Vol 41 (9) ◽  
pp. 1630-1638 ◽  
Author(s):  
Ayan H. Chaudhuri ◽  
Avijit Gangopadhyay ◽  
James J. Bisagni

Abstract Regional observational studies in the North Atlantic have noted significant hydrographical shifts in 1997–98 because of the episodic drop in the North Atlantic oscillation (NAO) during 1996. Investigation using a basin-scale model finds that, although the western North Atlantic (WNA) witnessed unusually low-salinity water by 1997, the eastern North Atlantic (ENA) simultaneously evidenced intrusions of high-salinity water at intermediate depths. This study shows that a major source of high salinity in the ENA is from the northward penetration of Mediterranean Outflow Water (MOW) that occurred concurrently with a westward shift of the subpolar front. The authors confirm that the low-salinity intrusion in the WNA is from enhanced Labrador Current flow. Results from climatological high- and low-NAO simulations suggest that the NAO-induced circulation changes that occurred in 1997–98 are a characteristic North Atlantic basin response to different forcing conditions during characteristic high- and low-NAO periods.


2012 ◽  
Vol 12 (2) ◽  
pp. 234-240 ◽  
Author(s):  
Fernando A. Rodríguez ◽  
Dunia E. Santiago ◽  
Nut Franquiz Suárez ◽  
J. A. Ortega Méndez ◽  
José M. Veza

The use of evaporation ponds is one alternative to direct disposal of desalination brine. Evaporation ponds are shallow basins that expose their contents to the environment, reducing liquid volume by means of evaporation. As they resemble traditional salt works that customarily use seawater, evaporation ponds were analyzed for their use for brine desalination management. In order to numerically evaluate this modification, a comparative study of the evaporation rate achieved in both traditional salt works and in evaporation ponds was carried out. Two equations were obtained for each estimation. The numerical expressions are specific for high salinity water as opposed to those available for low salinity water. These equations show the influence of fluid nature, the effect of wind and the lower brine evaporation capacity. It was observed in this study that the difference in brine evaporation capacity through the use of seawater is low enough to indicate that the use of brine in traditional salt works allows an increase in salt production without necessarily multiplying the surface required for evaporation.


Author(s):  
Lauriane A. dos A. Soares ◽  
Pedro D. Fernandes ◽  
Geovani S. de Lima ◽  
Saulo S. da Silva ◽  
Rômulo C. L. Moreira ◽  
...  

ABSTRACT Scarcity of good quality water is a limiting factor for irrigated agriculture, especially in semi-arid regions, which induces the use of waters with high salt concentration in crop irrigation. In view of the above, the objective of this study was to evaluate the phytomass accumulation and production components of colored cotton genotypes during the different development stages, under conditions of high salinity, with plants grown in lysimeters under greenhouse conditions, at the Center for Technology and Natural Resources of the Federal University of Campina Grande, Paraíba, Brazil. Three cotton genotypes (‘BRS Rubi’, ‘BRS Topázio’ and ‘BRS Safira’) irrigated with salinized water (9 dS m-1) during the three stages of crop development (vegetative, flowering and fruiting) were evaluated. The experiment was conducted in a randomized block design with three repetitions and three plants per plot, in drainage lysimeters filled with 24.5 kg of an Oxisol, with sandy loam texture. Irrigation with salinized water during the vegetative stage promoted greater phytomass accumulation in the genotypes of naturally colored cotton. In the initial stages of the cotton development, irrigation with saline water can be used with the lowest losses in production components, which are negatively affected when saline water is applied in the fruiting stage. Among the genotypes, ‘BRS Topázio’ is the most tolerant to irrigation water salinity in terms of seed cotton weight and lint cotton weight, regardless of the development stage.


Sign in / Sign up

Export Citation Format

Share Document