Genetic variability of the initial growth of Eugenia dysenterica DC.: implications for conservation and breeding1

2021 ◽  
Vol 51 ◽  
Author(s):  
Carolina Ribeiro Diniz Boaventura-Novaes ◽  
Evandro Novaes ◽  
Elias Emanuel Silva Mota ◽  
Mariana Pires de Campos Telles ◽  
Lázaro José Chaves

ABSTRACT Eugenia dysenterica DC. is a native tree from the Brazilian Savanna known as a genetic resource for its fruits and culinary potential. The knowledge on the genetic variability of agronomic traits is important to support studies on its conservation and domestication. This study aimed to estimate the quantitative genetic parameters of initial growth traits among and within E. dysenterica subpopulations, in provenance and progeny testing, and establish a germplasm collection representative of the species distribution. For that, 25 natural subpopulations were sampled and, within each subpopulation, six mother trees. The progenies were sown in a nursery, in a randomized complete blocks design consisting of 150 progenies, four replications and five plants per plot. The analysis of variance of the initial development traits revealed a greater variability among the progenies within the subpopulation than that observed among the subpopulations. The aboveground biomass represented only 15 % of the total biomass, a recurrent characteristic in Brazilian Savanna species. The estimated heritability and coefficients of genetic variation presented selection potential for the initial development traits, which are important for commercial seedlings production. An in vivo ex situ germplasm collection was established for conservation and breeding purposes, using a sample of four plants from each progeny.

Author(s):  
Saleh H ◽  
Li-Hammed M. A. ◽  
Kushairi A. ◽  
Rajanaidu N. ◽  
Mohd Sukri Hassan ◽  
...  

Estimation of genetic diversity and determination of the relationships between collections are useful strategies for ensuring efficient germplasm collection and utilization. Oil palm germplasm materials collected from Senegal and Gambia maintained at the Malaysian Palm Oil Board (MPOB) Kluang Station were characterized for genetic diversity. A total of 44 agronomic traits of these oil palm materials was subjected to simple statistics to evaluate the genetic variability; a


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 638
Author(s):  
Marcelo B. Medeiros ◽  
José F. M. Valls ◽  
Aluana G. Abreu ◽  
Gustavo Heiden ◽  
Suelma Ribeiro-Silva ◽  
...  

This study presents the status of ex situ and in situ conservation for the crop wild relatives of rice, potato, sweet potato, and finger millet in Brazil, and the subsequent germplasm collection expeditions. This research is part of a global initiative entitled “Adapting Agriculture to Climate Change: Collecting, Protecting, and Preparing Crop Wild Relatives” supported by the Global Crop Diversity Trust. Species of the primary, secondary, and tertiary gene pools with occurrences reported in Brazil were included: Oryza alta Swallen, O. grandiglumis (Döll) Prod., O. latifolia Desv., O. glumaepatula Steud., Eleusine tristachya (Lam.) Lam., E. indica (L.) Gaertn., Solanum commersonii Dunal, S. chacoense Bitter, Ipomoea grandifolia (Dammer) O’Donell, I. ramosissima (Poir.) Choisy, I. tiliacea (Willd.) Choisy, I. triloba L., and I. cynanchifolia Meisn. The status of the ex situ and in situ conservation of each taxon was assessed using the gap analysis methodology, and the results were used to plan 16 germplasm collection expeditions. Seeds of the collected material were evaluated for viability, and the protocols for seed germination and cryopreservation were tested. The final conservation score, resulting from the gap analysis and including the average of the ex situ and in situ scores, resulted in a classification of medium priority of conservation for all the species, with the exception of I. grandifolia (high priority). The total accessions collected (174) almost doubled the total accessions of these crop wild relatives incorporated in Embrapa’s ex situ conservation system prior to 2015. In addition, accessions for practically absent species were collected for the ex situ conservation system, such as Ipomoea species, Eleusine indica, and Solanum chacoense. The methods used for dormancy breaking and low temperature conservation for the Oryza, Eleusine, and Ipomoea species were promising for the incorporation of accessions in the respective gene banks. The results show the importance of efforts to collect and conserve ex situ crop wild relatives in Brazil based on previous gap analysis. The complementarity with the in situ strategy also appears to be very promising in the country.


2018 ◽  
Vol 244 ◽  
pp. 275-283 ◽  
Author(s):  
Laura Siracusa ◽  
Cristina Patanè ◽  
Valeria Rizzo ◽  
Salvatore Luciano Cosentino ◽  
Giuseppe Ruberto

2011 ◽  
Vol 5 (Suppl 7) ◽  
pp. P18 ◽  
Author(s):  
Dayane B Melo ◽  
José Alexandre F Diniz-Filho ◽  
Guilherme Oliveira ◽  
Ludmilla L Santana ◽  
Thannya N Soares ◽  
...  

2021 ◽  
Author(s):  
Julissa Rojas-Sandoval ◽  
Pedro Acevedo-Rodríguez

Abstract Genetics: The chromosome number reported for C. dactylon varies from 2n = 18 to 2n = 36 with diploid and polyploid populations (Cook et al., 2005). Ramakrishan and Singh (1966) and Sarandon (1991) have found differences in total biomass and biomass partition according to the origin of the population. Sarandon (1991) points out that characters are highly heritable, which means that high genetic variability for biomass production and variable architecture allows an ample base for selection, which in most cases is induced by herbicides, mechanical control or forage production. Reproductive Biology: C. dactylon is wind-pollinated and generally self-incompatible, suffering from inbreeding depression when genotypes are self-pollinated. Quantitative traits such as seed yield and forage yield can be dramatically negatively affected by inbreeding depression (Cook et al., 2005). In diploid populations, caryopses are formed after zygote formation. In polyploids, which are sterile, caryopses may be apomictic. Physiology: This C4 plant (Kissmann, 1991) has high rates of accumulation under adequate irradiance, water and nutrient supply and may consume 75 kg of N, 20 kg of P and more than 1,500,000 litres of water for 5000 kg/ha of biomass dry matter (Fernandez, 1991). In the south of Santa Fe province, Argentina, a maximum biomass of 8000 kg/ha may be generated under a summer crop of maize or sunflower with >75% located in the first 10 cm of the soil profile (Lombardo, 1973), whereas in Balcarce (Argentina) about 5000 kg/ha is commonly found in maize or sunflower stubble. Phenology: A photoperiod of 13 hours induces flowering. Low night temperatures coupled with high diurnal temperatures induces blooming (Nir and Koller, 1976). A reduction in irradiance drastically decreases inflorescence production (Moreira, 1975). In North America, annual plants reproduce during spring and perennial plants reproduce all year long (USDA-NRCS, 2014). Longevity: C. dactylon grows as both an annual and perennial grass. The annual growth-form becomes dormant and turns brown when nighttime temperatures fall below freezing or average daytime temperatures are below 10°C (Cook et al., 2005). Activity Patterns: Seeds may be the route of invasion in weed-free fields through the faeces of cows (Rodriguez, personal communication). Rhizome biomass exhibits an annual cyclic pattern and, as with any perennial weed, low temperatures reduce biomass and viability is lost as a consequence of the consumption of materials due to respiration and maintenance. The digestibility of stocked material is severely decreased, implying a loss in forage quality (Vaz Martins, 1989). This is a character that has largely improved in cultivated varieties. Each node has a physiological self-governing structure in relation to the apex, but is highly dependent on substances from other plant parts. The mother plant determines the runner growth pattern on the soil surface according to the sugar-gibberellin balance (Montaldi 1970). Node disconnection may be caused by natural decay and cultivation and produces damage in the breakdown zone and changes in hormone and nutrient relationships. It is widely demonstrated that rhizome or runner fragmentation induces the activation of buds. The proportion of activated buds increases as the number of buds per segment decreases (Moreira, 1980; Kigel and Koller, 1985; Fernandez and Bedmar, 1992). The cultivation method is mainly responsible for vegetative propagation fragmentation. The higher the cultivation intensity, the smaller the segments produced (Kigel and Koller, 1985). Population Size and Structure This weed produces an enormous number of small seeds (0.25-0.30 mg), the viability and dormancy of which are highly variable according to genotype and the conditions when formed. The seed is important because it confers high genetic variability on the population. Perez et al. (1995) recorded a very low germination rate. Uygur et al. (1985) obtained up to 15% germination at constant temperatures of 35-40°C, and 50% at temperatures alternating between 20 and 30°C. Moreira (1975) obtained up to 80% germination with the help of nitrate, chilling and alternating temperatures, and Elias (1986) recorded up to 96% germination from heavier samples of seed. Seeds remain viable in the soil for at least 2 years (Caixinhas et al., 1988). As a rule, cultivars have relatively high viability. Osmo-conditioning of Bermuda grass seeds with PEG followed by immediate sowing improved seed germination and seedling growth under saline conditions (Al-Humaid 2002). The probability of emergence and successful establishment of C. dactylon decreases with the depth of the fragment, but increases with the weight of the node and internode (Perez et al., 1998). Growth from plants originated from a runner may exhibit a different biomass partition than that from plants originated from a rhizome (Fernandez, 1986). From sprouting onwards, weed growth is controlled mainly by temperature (optimum 25-30°C) and radiation, but also by humidity and soil fertility. The efficiency of carbohydrate reserve usage during sprout growth is highly dependent on temperature and the type of vegetative structure; it is maximum at 20°C and is higher for rhizomes than for stolons (Satorre et al., 1996). Runners and rhizome growth begins 30 days after growth but only if soil temperature is >15°C. Rates of 15 g/g/day have been recorded in Argentina (Lescano de Ríos, 1982).


Author(s):  
S. Mwangi ◽  
T.K. Muasya ◽  
E.D. Ilatsia ◽  
A.K. Kahi

Summary Pedigree analysis using genealogical information of 18 315 animals born between 1949 and 2008 was done to quantify genetic variability of the Sahiwal population in Kenya. Generation intervals for sire pathways were longer than dam pathways and increased over year periods, from about 4–16 years. The later was due to use of old bulls for breeding in the last 2 year groups and cessation of progeny testing in the year 2000. Average inbreeding level in last year period studied was 1.2 percent. Genetic variability of the population as assessed based on gene origin statistics decreased over the years. The ratio of effective number of founders to founders of 0.06 showed unequal contribution of founders to the reference population. However, since the founding population, ancestors contributed equally as shown by the ratio of f e/f a of 0.94, which could also be due to lack of effective selection in this population. The ratio of f g/f a of 0.63 indicated genetic loss of genetic variability occurred through genetic drift in the Kenyan Sahiwal population. The small number of ancestors (16) that accounted for 50 percent of the total variation in the reference population suggested overuse of a small number of some animals as parents over generations. The smaller ratio of f g/f e compared with f a/f e also confirms loss of genetic variability in the population by genetic drift than bottlenecks. Therefore the breeding strategy for the Sahiwal population in Kenya should incorporate tools that balance rate of genetic gain and the future rate of inbreeding.


2018 ◽  
Vol 42 (1) ◽  
Author(s):  
Fabio Santos Matos ◽  
Igor Alberto Silvestre Freitas ◽  
Lidiane Villas Boas Dos Santos ◽  
Daniel Guimarães Venâncio ◽  
Patrícia Souza da Silveira

ABSTRACT The objective of this study was to analyze the effect of water deficit stress on the growth of Dipteryx alata plants. The experiment was carried out on a bench in full sun at the Goiás State University experimental unit, in Ipameri town, Goiás. Dipteryx alata seeds were collected from native plants in that municipality and sown in four-liter pots containing a mixture of soil, sand and cattle manure at ratio 3:1:0.5, respectively. The experiment was set up following the completely randomized design with five treatments (plants irrigated for 25 days with water volumes corresponding to 0%, 25%, 50%, 75%, and 100% of daily evapotranspiration) and six replicates. Treatments were applied when the plants were 60 days old, and at 85 days the plants were assessed for the following parameters: plant height, stem diameter, number of leaves, foliar chlorophyll concentration (a+b ), total carotenoids, relative water content, transpiration, leaf, stem and root mass ratios, and total biomass. During early development, the Dipteryx alata plants were highly sensitive to water deficit, significantly slowing down vegetative growth. Accordingly, in order to remain alive, the plants drastically reduced transpiration as a result of high stomatal sensitivity.


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 622 ◽  
Author(s):  
Wen-Yang Hsu ◽  
Yuan-Chi Lian ◽  
Pei-Yu Wu ◽  
Wei-Min Yong ◽  
Jinn-Kong Sheu ◽  
...  

Micron-sized patterned sapphire substrates (PSS) are used to improve the performance of GaN-based light-emitting diodes (LEDs). However, the growth of GaN is initiated not only from the bottom c-plane but also from the sidewall of the micron-sized patterns. Therefore, the coalescence of these GaN crystals creates irregular voids. In this study, two kinds of nucleation layers (NL)—ex-situ AlN NL and in-situ GaN NL—were used, and the growth of sidewall GaN was successfully suppressed in both systems by modifying the micron-sized PSS surface.


2011 ◽  
Vol 35 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Fernanda Carlota Nery ◽  
Hilton Morbeck de Oliveira ◽  
Amauri Alves de Alvarenga ◽  
Sara Dousseau ◽  
Evaristo Mauro de Castro ◽  
...  

Ecophysiological studies under semi-controlled conditions in nurseries and greenhouses are essential to enable the use of native species to recover degraded areas and for commercial planting. Talisia subalbens (Mart) Radlk, 'cascudo', is a native fruiting species of the Cerrado on the verge of extinction. The ecophysiological performance of this species was evaluated in nursery conditions under different levels of shading (full sunshine, 30%, 50% and 70%). Initial growth, biomass allocation, gas exchange and chlorophyll content of the plants were analyzed. Full sunshine cultivated plants showed a higher accumulation of total, shoot, and root dry biomass. There was no significant difference in the root/shoot ratio among the treatments. Seedlings cultivated under full sunshine and 30% shading showed higher values for height, basal diameter, and leaf area. Differences in stomata conductance and photosynthesis rate were not observed among the different shading levels. Plants cultivated under 70% of shading had higher contents of chlorophyll a, b, and total. During the initial phase with higher levels of radiation were fundamental for the development of T. subalbens seedlings.


Sign in / Sign up

Export Citation Format

Share Document