scholarly journals INITIAL GROWTH OF Dipteryx alata PLANTS UNDER WATER DEFICIT

2018 ◽  
Vol 42 (1) ◽  
Author(s):  
Fabio Santos Matos ◽  
Igor Alberto Silvestre Freitas ◽  
Lidiane Villas Boas Dos Santos ◽  
Daniel Guimarães Venâncio ◽  
Patrícia Souza da Silveira

ABSTRACT The objective of this study was to analyze the effect of water deficit stress on the growth of Dipteryx alata plants. The experiment was carried out on a bench in full sun at the Goiás State University experimental unit, in Ipameri town, Goiás. Dipteryx alata seeds were collected from native plants in that municipality and sown in four-liter pots containing a mixture of soil, sand and cattle manure at ratio 3:1:0.5, respectively. The experiment was set up following the completely randomized design with five treatments (plants irrigated for 25 days with water volumes corresponding to 0%, 25%, 50%, 75%, and 100% of daily evapotranspiration) and six replicates. Treatments were applied when the plants were 60 days old, and at 85 days the plants were assessed for the following parameters: plant height, stem diameter, number of leaves, foliar chlorophyll concentration (a+b ), total carotenoids, relative water content, transpiration, leaf, stem and root mass ratios, and total biomass. During early development, the Dipteryx alata plants were highly sensitive to water deficit, significantly slowing down vegetative growth. Accordingly, in order to remain alive, the plants drastically reduced transpiration as a result of high stomatal sensitivity.

2012 ◽  
Vol 4 (1) ◽  
pp. 112-115 ◽  
Author(s):  
Hossein MARDANI ◽  
Hassan BAYAT ◽  
Amir Hossein SAEIDNEJAD ◽  
Ehsan Eyshi REZAIE

Impacts of various concentrations of salicylic acid (SA) on cucumber (Cucumis sativus L.) seedling characteristic were evaluated under different water stress levels by using a factorial arrangement based on completely randomized design with three replications at experimental greenhouse of Ferdowsi University of Mashhad, Iran. The studied factors included three water deficit levels (100% FC, 80% FC, and 60% FC) considered as first factor and five levels of SA concentrations (0, 0.25, 0.5, 0.75, and 1 mM) as second factor. Results showed that foliar application of SA at the highest concentration enhanced leaf area, leaf and dry weight while decreased stomatal conductance under high level of water deficit stress. Though, severe water deficit stress sharply raised the SPAD reading values. In general, exogenous SA application could develop cucumber seedling characteristic and improve water stress tolerance.


2020 ◽  
Vol 12 (12) ◽  
pp. 75
Author(s):  
Igor V. de Oliveira ◽  
Rodrigo O. Aguiar ◽  
Clenes C. Lima ◽  
Roberto L. Cunha ◽  
Wilton P. da Cruz ◽  
...  

Oil palm (Elaeis guineensis Jacq.) presents considerable sensitivity to water deficit and the identification of stress-tolerant hybrids is a strategy to improve the adaptation and growth of plants throughout the annual dry seasons. For this reason, we examined possible differences in water deficit tolerance in two oil palm hybrids (BRS Manicoré and BRS C 2501) subjected to moderate drought conditions. The comparison of hybrids was performed using diurnal curves of leaf water potential (Ψw), gas exchanges, and biochemical variables, such as chloroplast pigments and enzymes analysis. The experiment was carried out in a completely randomized design, in a 2 × 2 × 13 factorial scheme resulting from the combination of two hybrids versus two water regimes, and thirteen evaluation schedules. Regardless of the water regime, the maximum average value of net assimilation rates of CO2 (A), stomatal conductance to water vapor (gs), and water use efficiency (A/E) in both hybrids was registered at 8 h. Peaks of A, gs, and A/E coincided with milder climatic conditions during the morning. While decreases in these variables were observed with increases in air temperature and vapor pressure deficit between leaf and atmosphere throughout the day. The water deficit induced significant increases in the total carotenoids levels of BRS C 2501 (62%) and BRS Manicoré (220%), while chlorophyll a content was significantly reduced only in BRS C 2501 (36%) and chlorophyll b only in Manicoré (34%). It also mediated significant increases in the activities of glycolate and catalase oxidase in both hybrids; however, such increases were more expressive in BRS C 2501 than in BRS Manicoré. In conclusion, it can be inferred that BRS Manicoré presents more favorable physiological and biochemical responses to the water deficit imposed compared to BRS C 2501.


2021 ◽  
Author(s):  
Fatemeh Ebrahimi ◽  
Amin Salehi ◽  
Mohsen Movahedi Dehnavi ◽  
Amin Mirshekari ◽  
Mohammad Hamidian ◽  
...  

Abstract BackgroundWater-deficit stress is one of the most important sources of damage to crop production worldwide. Adopting appropriate varieties using soil microorganisms such as arbuscular mycorrhiza(AM) can significantly reduce theadverseeffectsofwater deficiency.This study is aimed to evaluate the role of Funneliformismosseaeon nutrients uptake and some physiological traits of two chamomile varieties namely Bodgold (Bod) and Soroksári(Sor) under water-deficit stress. The pot experiment was performed in a hydroponic system within a completely randomized design considering four replications. Three levels of water-deficit stress (PEG 6000) were taken into account at water potentials of -0.4 and -0.8MPa. The second factor was AM inoculation.ResultsWater-deficit stress significantly reduced the uptake of macro-nutrients (N, P, and K) and micro-nutrients (Fe, Cu, Mn, and Zn) in the shoots and roots. Moreover, the level of osmolytes (total soluble sugars and proline) and the activity of antioxidant enzymes in the shoots of both varieties increased under water-deficit stress. In the case of Sor variety, the level of these compounds was more satisfactory. AM improved plant nutrition uptake and osmolyte contents while enhancing antioxidant enzymes and reducing theadverseeffectsofwater-deficit stress. Under water-deficit stress, the growth and total dry weight improved upon AM inoculation. ConclusionsIn general, inoculation of chamomile with AM balanced the uptake of nutrients increased the level of osmolytes, antioxidant enzymes, and hence improved plant characteristics under water-deficit stress in both varieties, however, it was more effective in reducing stress damages in Sor variety.


2018 ◽  
Vol 12 (3) ◽  
pp. 191
Author(s):  
Domingos Ferreira De Mélo Neto ◽  
Daniel Gomes Coelho ◽  
Moab Torres De Andrade ◽  
Jandelson De Oliveira Alves

The sprouting phase of cassava is critical for the establishment of the plant, with this phase being dependent on soil moisture. As such, this study evaluated the effect of different irrigation levels on the initial growth of cassava cv. Mossoró in semi-arid conditions. The experiment was conducted under completely randomized design conditions with 5 replications. The treatments in pots containing one plant per experimental unit consisted of 5 irrigation levels, 0, 25, 50, 75 and 100% of the reference evapotranspiration (ETo, mm day-1), which corresponded to totals for the experimental period of 11.20; 42.15; 73.09; 104.03 and 134.97 mm, respectively. At 30 days after planting, the number of leaves and stems, as well as the dry mass of the shoot and the root had increased sharply for irrigation levels up to 73.09 mm. For higher irrigation levels there was a tendency for plant growth stabilization; however, above 104.03 mm there was a decrease. Shoot and root dry mass ratio showed severe water stress at the 11.20 mm level, being more damaging to root growth. Plant height showed a positive linear trend as the level of irrigation was increased, as opposed to water use efficiency. Therefore, irrigation with 50% replacement of ETo (73.09 mm) provided the best conditions for early growth of cassava.


Author(s):  
Maílson Jesus ◽  
Silvana Scalon ◽  
Daiane Dresch ◽  
Jéssica Aline Linné ◽  
Vânia Lima ◽  
...  

Dipteryx alata Vogel (Fabaceae) is a fruit tree species native to the Cerrado with ecological and economic potential. However, water deficit can be a limiting factor to the initial growth of this species, requiring knowledge on technologies that can alleviate this stressful effect. We hypothesized that inoculation with arbuscular mycorrhizae fungi contributes to stress mitigation during and after water deficit. D. alata seedlings were subjected to two water regimes (control: seedlings irrigated daily; and water deficit: irrigation suspension); associated with inoculation with arbuscular mycorrhizal fungi (AMF): AM- = without inoculation; AM+ = inoculation with Rhizophagus clarum; and three evaluation periods: T0 - time zero; F0 - zero photosynthesis (seven days of water restriction); REC - recovery (100 days). Water deficit impaired water relations, decreasing the quality of D. alata seedlings. AM+ seedlings showed higher relative water content (RWC), leaf area ratio, chlorophyll index, and Rubisco carboxylation capacity (A/Ci), which helped in photosynthetic metabolism. Inoculation with R. clarum alleviated the impact of stress on water use efficiency, water potential, RWC, and A/Ci in REC. Inoculation with AMF is a promising management technique in the production of D. alata seedlings for increasing seedling quality and resilience to water deficit.


Author(s):  
Sebastiana Renata Vilela Azevedo ◽  
Geovana Gomes de Sousa ◽  
Maria Beatriz Ferreira ◽  
Marcelo Pereira Dutra Júnior ◽  
Iara Cristina Araujo Rocha ◽  
...  

Aims: To evaluate whether the initial growth and production of green biomass of the legume species Crotalaria juncea L. and Canavalia ensiformis (L.) DC. are influenced by phosphate fertilizer. Study Design: A completely randomized design was used in a scheme 05 treatments x 02 cultures, with 3 replications, totaling 30 vessels in the experiment. Place and Duration of Study: Forest nursery the Federal University of Campina Grande, campus of Patos-PB, between April 2018 and May 2018. Methodology: The treatments consisted of two legumes (C. juncea and C. ensiformis) and five doses of phosphorus (00-50-100-150-200 mg kg-1 of P2O5) through single super phosphate. Fortnightly measurements of height and diameter were performed for 60 days. Fresh biomass of the shot and root was obtained at the end of the evaluations. Results: There is a higher growth in height for individuals of C. ensiformis when cultivated in doses of 150 mg kg-1, with an average of 30.68 cm. For C. juncea, the treatments were similar. For the stem diameter, there was significant interaction (p <0.05) only for C. juncea, in which, unlike the results obtained for height, this variable grew linearly with increased phosphorus doses. Regardeless of the P doses fresh biomass production of C. ensiformis was higher than to C. juncea. Already in function on the levels of P there is an influence of nutrient only for C. ensiformis, with higher total biomass production and when cultivated with 100 mg kg-1 of P2O5. Conclusion: Regardless of the cultivated species phosphorus influences the initial growth and production of fresh biomass. In general, it is recommended to cultivate the legumes studied with doses of 100 mg kg-1 of P2O5 through single super phosphate for a higher production of total fresh biomass.


2021 ◽  
Author(s):  
Fatemeh Ebrahimi ◽  
Amin Salehi ◽  
Mohsen Movahedi Dehnavi ◽  
Amin Mirshekari ◽  
Mohammad Hamidian ◽  
...  

Abstract BackgroundWater-deficit stress is one of the most important sources of damage to crop production worldwide. Adopting appropriate varieties using soil microorganisms such as arbuscular mycorrhiza(AM) fungi can significantly reduce the adverse effects of water deficiency. This study is aimed to evaluate the role of Funneliformis mosseae on nutrients uptake and some physiological traits of two chamomile varieties namely Bodgold (Bod) and Soroksári (Sor) under water-deficit stress. The pot experiment was performed in a completely randomized design with three factors: water-deficit stress (PEG 6000) was applied along with Hoagland solution at three levels (0, -0.4 and -0.8 MPa), two German chamomile varieties (Bodgold (Bod) and Soroksari (Sor)) and AM inoculation (Funneliformis mosseae species (fungal and non-fungal)) at four replications in perlite substrate. ResultsWater-deficit stress significantly reduced the uptake of macro-nutrients (N, P, and K) and micro-nutrients (Fe, Cu, Mn, and Zn) in the shoots and roots. Moreover, the level of osmolytes (total soluble sugars and proline) and the activity of antioxidant enzymes in the shoots of both varieties increased under water-deficit stress. In the case of Sor variety, the level of these compounds was more satisfactory. AM improved plant nutrition uptake and osmolyte contents while enhancing antioxidant enzymes and reducing the adverse effects of water-deficit stress. Under water-deficit stress, the growth and total dry weight improved upon AM inoculation. ConclusionsIn general, inoculation of chamomile with AM balanced the uptake of nutrients increased the level of osmolytes, antioxidant enzymes, and hence improved plant characteristics under water-deficit stress in both varieties, however, it was more effective in reducing stress damages in Sor variety.


2003 ◽  
Vol 27 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Amauri Alves de Alvarenga ◽  
Evaristo Mauro de Castro ◽  
Érico de Castro Lima Junior ◽  
Marcelo Murad Magalhães

Four levels of shading (full sunlight (0%), 30, 50, 70% of solar radiation interception on growth, chlorophyll concentration and photosynthetic rate were studied in Croton urucurana Baill., a pioneer plant species. This species seedlings are of potential interest for reforestation projects and recovery of degraded areas. The seedlings were grown in pots containing soil and sand (2:1) and later transferred to plastic bags of 3 dm³ and submitted to different levels of shading (30, 50, 70%) of solar radiation and full sunlight, as control. The experimental design was completely randomized with five replicates and each experimental unit was composed of five plants. The results suggest that plants submitted to 70% shading showed higher dry weight accumulation in leaf and root, and higher plant height and leaf area. However, the seedlings root system showed higher dry biomass under full sunlight. It was observed a tendency to increase chlorophyll concentration and to decrease photosynthetic rate with the increase of the shading level.


2015 ◽  
Vol 48 (1) ◽  
pp. 57-67 ◽  
Author(s):  
A.A. Bahari ◽  
R. Sokhtesaraei ◽  
H.R. Chaghazardi ◽  
F. Masoudi ◽  
H. Nazarli

Abstract In order to study the effects of water deficit stress and foliar application of salicylic acid (SA) on the activity of five antioxidant enzymes (catalase - CAT; EC 1.11.1.6, ascorbate peroxidase - APX; EC 1.11.1.11, glutathione reductase - GR; EC 1.6.4.2, peroxidase - POD; EC 1.11.1.7 and polyphenol oxidase - PPO; 1.14.18.1) of Thymus daenensis (subsp. lancifolius), an experiment was conducted in factorial based on completely randomized design with three replicates, during 2013. Drought treated seedlings showed elevated levels of reactive oxygen species (ROSs), with a concomitant increase in the activities of the enzymes CAT, APX, GR, POD and PPO, compared to controls. Under medium water deficit, APX and PPO activities significantly increased by higher SA concentration (2 mM), but under control and sever water deficit conditions, there was no significant difference between 1 mM and 2 mM concentrations regarding APX and PPO activity. Under all levels of available water, increase in SA concentration from 0.1 mM to1 mM induced significant increase in GR activity. The maximum amount of GR (under medium water deficit condition) achieved from 1mM of SA. While the maximum amounts of APX, PPO (under medium water deficit condition), CAT and POD (under sever water deficit condition) achieved from 2 mM of SA. In total, our results suggest that application of SA (as a trigger of signal cascade) could be advantageous against water deficit stress, and could protect thyme plants in mentioned conditions.


Author(s):  
Juliana Lopes dos Santos ◽  
Evandro Alves Ribeiro ◽  
Rodrigo Silva de Oliveira ◽  
João Henrique da Silva Luz ◽  
Bruno Henrique di Napoli Nunes ◽  
...  

Fungi of the genus Trichoderma are important microorganisms for increasing plant growth. However, few studies have evaluated the potential of volatile compounds produced by the fungus Trichoderma spp. and it's potential as promoters and beneficiaries with respect to maize cultivation. Thus, this work aimed to evaluate the efficiency of volatile compounds produced by Trichoderma spp. and their potential for morphophysiological improvement in the initial growth of corn crops. The experiment was conducted in a factorial scheme (2x6+1), arranged in a completely randomized design, with two evaluation times (7 and 15 days after emergence (DAE) and five Trichoderma spp. isolates (plus one control). The isolates were classified as the following species and identified with the following codes: UFT-25: Trichoderma harzianum; UFT-37: Trichoderma pinnatium; UFT-57: Trichoderma virens; UFT-201: Trichoderma asperellum and UFT-204: Trichoderma longibrachiatum. The volatile compounds produced by Trichoderma spp. and inoculated in culture medium present in each experimental unit without direct contact with the roots of the plants, promoted an increase mass production and changed morphology and physiology, especially plant height, leaf area, absolute and relative growth rate, Falker chlorophyll index, instantaneous carboxylation efficiency (RuBisCo), and net photosynthesis rate


Sign in / Sign up

Export Citation Format

Share Document