scholarly journals Leaf anatomy and micromorphology of six Posoqueria Aublet species (Rubiaceae)

Rodriguésia ◽  
2010 ◽  
Vol 61 (3) ◽  
pp. 505-518 ◽  
Author(s):  
Rosani do Carmo de Oliveira Arruda ◽  
Doria Maria Saiter Gomes ◽  
Aline Carvalho de Azevedo ◽  
Michelle Lima Magalhães ◽  
Mario Gomes

Abstract The present study deals with the leaf anatomy and leaf surface of Posoqueria acutifolia Mart., P. latifolia Mart., P. longiflora Aublet, P. macropus Mart., P. palustris (Rudge) Roem. and Posoqueria sp., collected in fragments of Atlantic rain forest, Rio de Janeiro, Brazil. The epicuticular wax may occur in the form of filaments, granules or crusts. The leaves are covered by a thick cuticular layer that may be smooth or striated. Paracytic stomata, and non-glandular trichomes are limited to the abaxial surface; the latter are numerous in P. palustris, and rare in P. longiflora and P. latifolia. Leaves have a dorsiventral structure, with only one layer of palisade parenchyma and varied amounts of spongy parenchyma. Idioblasts containing crystalliferous sand were observed, and were more abundant in P. latifolia. The leaf blade vascular system is formed by collateral bundles with a parenchymatous sheath, associated with fibers. The vascular system of the petiole and the leaf blade forms an arch. Some of the anatomical features observed can be used to distinguish the species studied. Anatomical leaf characters could be used in the recognition of six species of Posoqueria studied, such as anticlinal wall of epidermal cells, wax deposition, trichomes and shape of the leaf margin.

2019 ◽  
Vol 26 (1) ◽  
pp. 97-106
Author(s):  
Ersin Minareci ◽  
Sinem Pekönür ◽  
Canan Özdemir ◽  
Mehmet Çiçek ◽  
Okan Kocabaş

The root, trunk and leaf anatomy of four taxa of Scutellaria albida namely, S. albida subsp. albida, S. albida subsp. velenovskyi, S. albida subsp. colchica and S. albida subsp. condensata were examined. The aim is to determine whether these characters can be used for systematic purposes. The roots displays a typical stele structure in all studied taxa. But their number of pith rays are different in each taxa. The stems of S. albida taxa have square like transection, collateral vascular bundles, parenchymatous pith and show 1-2 layered epidermis coated with thick cuticle. S. albida subsp. condensata has papillate epicuticular wax on its stem cuticle layer. In all taxa angular collenchyma, and cambium forming phloem outward and xylem inward are observed. The leaves are hypostomatic, have single rowed epidermis coated with thick cuticle and show dorsiventral mesophyll in all studied taxa. S. albida subsp. velenovskyi has echinate epicuticular wax on its leaf cuticle layer, but the others have smooth cuticle layer. The midrib shows one collateral bundles in all taxa but the shape of median veins of the leaf blade show variation in each taxa. Some of the anatomical characters viz. the number of pith rays of roots, the number of palisade parenchyma layer, plant cuticles covered by wax, the shape of median veins of the leaf blade and stomata index, provide information of taxonomical significance for these taxa.


2009 ◽  
Vol 69 (1) ◽  
pp. 129-136 ◽  
Author(s):  
LD. Tuffi Santos ◽  
BF. Sant'Anna-Santos ◽  
RMSA. Meira ◽  
FA. Ferreira ◽  
RAS. Tiburcio ◽  
...  

This work aimed to evaluate the effects of simulated drift of glyphosate on the morphoanatomy of three eucalypt clones and to correlate the intoxication symptoms on a microscopic scale with those observed in this visual analysis. The effects of glyphosate drift were proportional to the five doses tested, with Eucalyptus urophylla being more tolerant to the herbicide than E. grandis and urograndis hybrid. The symptoms of intoxication which were similar for the different clones at 7 and 15 days after application were characterized by leaf wilting, chlorosis and curling and, at the highest rates, by necrosis, leaf senescence and death. Anatomically glyphosate doses higher than 86.4 g.ha-1 caused cellular plasmolysis, hypertrophy and hyperplasia, formation of the cicatrization tissue and dead cells on the adaxial epidermis. The spongy parenchyma had a decrease, and the palisade parenchyma and leaf blade thickness had an increase. The increased thickness in leaf blade and palisade parenchyma may be related to the plant response to glyphosate action, as a form of recovering the photosynthetically active area reduced by necroses and leaf senescence caused by the herbicide.


Bothalia ◽  
1974 ◽  
Vol 11 (3) ◽  
pp. 235-241 ◽  
Author(s):  
R. P. Ellis

The leaf blade and epidermal anatomy of Paspalum paspalodes (Michx.) Scribn. (syn.  P. distichum L.) and P. vaginatum Swartz is compared and discussed. Numerous anatomical differences are evidentand the species can be separated on the basis of the distribution of sclerenchyma and the shape andthickness of the leaf margin. Another distinct diagnostic difference is the shape of the adaxial ribs and furrows and their associated papillae.  P. paspalodes has two distinct types of abaxial epidermis: cuticular and papillate.


Botany ◽  
2021 ◽  
pp. 379-387
Author(s):  
D.H.T. Firmo ◽  
S.A. Santos ◽  
M.E.M.P. Perez ◽  
P. Soffiatti ◽  
B.F. Sant’Anna-Santos

The Syagrus glaucescens complex comprises three species: Syagrus glaucescens Glaz. ex Becc., Syagrus duartei Glassman, and Syagrus evansiana Noblick. Recently, a new population of S. evansiana that possesses a high degree of endemism was reported in the Serra do Cabral mountain. Here we intend to study the leaf anatomy of the S. glaucescens complex and confirm whether this newly found population (from now on called Syagrus aff. evansiana) belongs to S. evansiana or not. Specimens were collected to investigate their leaf anatomy, which showed distinct differences between S. aff. evansiana and S. evansiana. The midrib anatomy revealed novelties for the S. glauscecens complex, proving useful for species diagnosis. Features such as accessory vascular bundles around the vascular system of the midrib and the number of collateral bundles are diagnostic for species identification. In addition, morphological and anatomical analyses indicated a correlation with the species occurrence. We found greater similarity between S. glaucescens and S. duartei, while S. evansiana and S. aff. evansiana are more alike. Here, we propose a new identification key based only on the leaf anatomy. Despite their morphological similarities, S. aff. evansiana and S. evansiana presented differences in leaf anatomy, which — when associated with their geographical isolation — suggests a fourth taxon in the complex.


2002 ◽  
Vol 62 (1) ◽  
pp. 179-185 ◽  
Author(s):  
G. F. A. MELO DE PINNA ◽  
J. E. KRAUS ◽  
N. L. de MENEZES

The leaf mine in Richterago riparia is caused by a lepidopteran larva (lepidopteronome). The leaves of R. riparia show campdodrome venation; the epidermis is unistratified, with stomata and glandular trichomes in adaxial and abaxial surfaces. The mesophyll is bilateral and the vascular system is collateral. During the formation of the mine, the larva consumes the chlorenchyma of the mesophyll and the smaller vascular bundles (veins of third and fourth orders). Structural alterations in the tissues of the host plant were not observed, except for the formation of a wound meristem and the presence of cells with phenolic substances next to the mine. Three cephalic exuviae of the miner were found in the mesophyll. This lepidopteronome is parenchymatic and the epidermis remains intact, but forms a protective layer for the mining insect.


2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Renata Gabriela Vila Nova de Lima ◽  
Liliane Ferreira Lima ◽  
Angélica Cândida Ferreira ◽  
Josiane Silva Araújo ◽  
Carmen Silvia Zickel

Abstract: Diploon is a monospecific genus represented by Diploon cuspidatum, an arboreal species that has morphological characteristics distinct from those of other Sapotaceae species. In this study, Diploon cuspidatum leaves were characterized morphoanatomically in order to reveal additional diagnostic characters of their external morphology of the genus. The Diploon petiole presents shape and arrangement of the vascular system flat-convex, occasionally with one or two accessory bundles, many laticifers, and many prismatic crystals. The midrib is biconvex with a U-shaped cuticle on the abaxial side, and laticifers are associated with the vascular tissues. Mesophyll is dorsiventral, palisade parenchyma has two cell layers, T- and Y-shaped malpighiaceous trichomes are on the abaxial epidermis with a small stalk cell and long arm. The venation pattern is brochidodromous. Intersecondary veins run parallel to the secondary veins, and quaternary veins branch freely. Higher order veins are not present. Morphoanatomical analysis revealed important characteristics that reveal a set of structures common to Sapotaceae, in addition to characters that are important for the recognition and identification of D. cuspidatum.


Bothalia ◽  
1987 ◽  
Vol 17 (1) ◽  
pp. 51-65 ◽  
Author(s):  
G. E. Gibbs Russell ◽  
R. P. Ellis

Ehrharta Thunb. is a genus of Gondwanaland distribution with its centre of diversity in the winter rainfall Fynbos Biome of southern Africa. In recent subfamily treatments Ehrharta has proved difficult to place satisfactorily, and during the past five years it has been moved between Bambusoideae and Arundinoideae. However, most previous systematic studies using cryptic characters have covered only four taxa out of about 35. The present study includes all African taxa, and demarcates seven species groups on the basis of both spikelet morphology and leaf blade anatomy. Parallelism and/or convergence in vegetative macromorphology within and between the species groups is widespread, and is similar, in some cases, to adaptations found in other plant families in the Fynbos Biome. However, these macromorphological trends are not reflected in the leaf anatomy. Leaf anatomy is generally consistent with the spikelet morphology. Some anatomical differences between the species groups in Ehrharta appear to be as great as differences between taxa of much higher ranks elsewhere in the Poaceae. This wide range of variability may be related to an early divergence of Ehrharteae from other grasses, as suggested by the Gondwanaland distribution, and may explain the difficulty of placing this fascinating yet baffling genus in a subfamily.


Bothalia ◽  
1980 ◽  
Vol 13 (1/2) ◽  
pp. 191-198 ◽  
Author(s):  
R. P. Ellis

The anatomical structure, of the leaf blade as seen in transverse section, and of the abaxial epidermis, of Merxmuellera stricta (Schrad.) Conert is described and illustrated. In this variable species four distinct anatomical “forms” are recognized viz. the typical  M. stricta form, the Cathedral Peak form, the Drakensberg form and the alpine form. The alpine and Cathedral Peak forms have recently been described as M. guillarmodiae Conert (1975). The degree of anatomical differentiation of these “forms” resembles the situation described in M. disticha (Nees) Conert (Ellis, 1980). Populations of both M. stricta and M. disticha from the Drakensberg mountains display extensive anatomical diversification which appears to be correlated with environmental factors. In addition, morphological differences are exhibited as well and the anatomical “forms” of M. stricta probably warrant taxonomic recognition.


Bothalia ◽  
1980 ◽  
Vol 13 (1/2) ◽  
pp. 185-189 ◽  
Author(s):  
R. P. Ellis

The anatomical structure, of the leaf blade as seen in transverse section, and of the abaxial epidermis, of Merxmuellera disticha (Nees) Conert is described and illustrated. Three distinct anatomical “forms” are recognized viz. typical M. disticha, the Drakensberg form and the alpine bog form. These three anatomical groups also appear to have differing environmental requirements and probably warrant taxonomic status.


Bothalia ◽  
1983 ◽  
Vol 14 (3/4) ◽  
pp. 895-899 ◽  
Author(s):  
R. L. Verhoeven ◽  
H. J. T. Venter ◽  
W. L. J. Van Rensburg

The anatomy of the leaf blade, petiole, stem and root of the genus Sarcocaulon (DC.) Sweet is discussed. On the basis of the leaf anatomy, the four sections recognized by Moffett (1979) can be identified: section Denticulati (dorsiventral leaves), section Multifidi (isobilateral leaves and adaxial and abaxial palisade continuous at midvein), section Crenati (isobilateral leaves, short curved trichomes and glandular hairs), section Sarcocaulon (isobilateral leaves and glandular hairs only). The anatomy of the stem is typically that of a herbaceous dicotyledon with a thick periderm. The root structure shows that the function of the root is not food storage.


Sign in / Sign up

Export Citation Format

Share Document