scholarly journals Strawberry (Fragaria X ananassa Duch.) yiel das affected by the soil pH

2009 ◽  
Vol 81 (2) ◽  
pp. 265-269 ◽  
Author(s):  
Tomo M. Milosevic ◽  
Nebojsa T. Milosevic ◽  
Ivan P. Glisic

Two-year trials (20062007) suggested that the use of calcium oxide (CaO) on acid soils increased soil pH and yields in strawberry cultivars Marmolada, Selena and Senga Sengana, under the environmental conditions of Cacak (Western Serbia). The highest yield was obtained when CaO was applied at 750 kg ha-1 rate. Further increase in rate up to 1,500 kg ha-1 did not show corresponding increase in yield; the result was a slight yield drop compared to the peak yield shown at 750 kg ha¹ rate. Overall, yields at rates above 750 kg ha¹ were still higher than control and in the treatment employing lowest CaO application rate of 250 kg ha-1.

Author(s):  
P. Bishop ◽  
B.F. Quin

Although not always recognised as such, the major reason for the recommended application of sufficient lime to achieve a soil pH of 5.5 or more on New Zealand pastures is to ameliorate phytotoxic effects of water soluble cations of aluminium (Al), manganese (Mn) and iron (Fe). However, evidence that increasing numbers of farms have sub-optimum soil pH levels suggests that traditional treatment, viz. infrequent heavy applications of agricultural lime, is not considered cost-effective by many farmers, probably due largely to increasing application costs. Application of the carboxylate copolymer AlpHa® to eliminate phytotoxic levels of Al, Mn and Fe was found to be comparable in effectiveness to typical rates of lime application, but with the advantage of minimal application cost, as the low application rate required (2 L/ha) can be incorporated into fertiliser or (reduced) lime applications. Standard soil testing of commercial farms involves combining 15-20 soil cores from a given paddock to determine the "average" pH. As well as underestimating the mean pH, this method gives no information regarding micro-variability of soil pH in the pasture root zone. Over 25% of the pasture root zone was found to have pH levels 0.3 to 0.6 lower than the true average, the therefore susceptible to metal toxicity. Commercial laboratory testing of individual cores would be uneconomic. The in-field direct measurement of soil (damp) pH using the antimony (Sb) electrode was found to be a very convenient and robust technique for assessing variability. The benefits of more accurate identification of metal toxicity risk coupled with the potential of a more cost-effective method of amelioration are discussed. Keywords: metal toxicities, Al, Mn, Fe toxicity treatment, alternatives to liming, acid soils under pastures, pH variability in pastures, urine patch pH effects, AlpHa®, carboxylate co-polymers


1977 ◽  
Vol 57 (2) ◽  
pp. 197-203 ◽  
Author(s):  
W. A. RICE ◽  
D. C. PENNEY ◽  
M. NYBORG

The effects of soil acidity on nitrogen fixation by alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.) were investigated in field experiments at 28 locations, and in greenhouse experiments using soils from these locations. The pH of the soils (limed and unlimed) varied from 4.5 to 7.2. Rhizobia populations in the soil, nodulation, and relative forage yields (yield without N/yield with N) were measured in both the field and greenhouse experiments. Rhizobium meliloti numbers, nodulation scores, and relative yields of alfalfa decreased sharply as the pH of the soils decreased below 6.0. For soils with pH 6.0 or greater, there was very little effect of pH on any of the above factors for alfalfa. Soil pH in the range studied had no effect on nodulation scores and relative yields of red clover. However, R. trifolii numbers were reduced when the pH of the soil was less than 4.9. These results demonstrate that hydrogen ion concentration is an important factor limiting alfalfa growth on acid soils of Alberta and northeastern British Columbia, but it is less important for red clover. This supports the continued use of measurements of soil pH, as well as plant-available Al and Mn for predicting crop response to lime.


1977 ◽  
Vol 57 (2) ◽  
pp. 157-164 ◽  
Author(s):  
D. C. PENNEY ◽  
M. NYBORG ◽  
P. B. HOYT ◽  
W. A. RICE ◽  
B. SIEMENS ◽  
...  

The amount of cultivated acid soil in Alberta and northeastern British Columbia was estimated from pH values of farm samples analyzed by the Alberta Soil Testing Laboratory, and the effect of soil acidity on crops was assessed from field experiments on 28 typical acid soils. The field experiments consisted of two cultivars of barley (Hordeum vulgare L.) and one cultivar each of rapeseed (Brassica campestris L.), red clover (Trifolium pratense L.) and alfalfa (Medicago sativa L.) grown with and without lime for 2 yr. There are about 30,000 ha of soils with a pH of 5.0 or less where soil acidity seriously restricts yields of all four crop species. There are approximately 300,000 ha with a soil pH of 5.1–5.5 where liming will on the average increase yields of alfalfa by 100%, yields of barley by 10–15%, and yields of rapeseed and red clover by 5–10%. There are a further 1,600,000 ha where soil pH ranges from 5.6 to 6.0 and liming will increase yields of alfalfa by approximately 50% and yields of barley, rapeseed and red clover by at least 4–5%.


Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 341 ◽  
Author(s):  
Craig A. Scanlan ◽  
Ross F. Brennan ◽  
Mario F. D'Antuono ◽  
Gavin A. Sarre

Interactions between soil pH and phosphorus (P) for plant growth have been widely reported; however, most studies have been based on pasture species, and the agronomic importance of this interaction for acid-tolerant wheat in soils with near-sufficient levels of fertility is unclear. We conducted field experiments with wheat at two sites with acid soils where lime treatments that had been applied in the 6 years preceding the experiments caused significant changes to soil pH, extractable aluminium (Al), soil nutrients and exchangeable cations. Soil pH(CaCl2) at 0–10cm was 4.7 without lime and 6.2 with lime at Merredin, and 4.7 without lime and 6.5 with lime at Wongan Hills. A significant lime×P interaction (P<0.05) for grain yield was observed at both sites. At Merredin, this interaction was negative, i.e. the combined effect of soil pH and P was less than their additive effect; the difference between the dose–response curves without lime and with lime was greatest at 0kgPha–1 and the curves converged at 32kgPha–1. At Wongan Hills, the interaction was positive (combined effect greater than the additive effect), and lime application reduced grain yield. The lime×P interactions observed are agronomically important because different fertiliser P levels were required to maximise grain yield. A lime-induced reduction in Al phytotoxicity was the dominant mechanism for this interaction at Merredin. The negative grain yield response to lime at Wongan Hills was attributed to a combination of marginal soil potassium (K) supply and lime-induced reduction in soil K availability.


2015 ◽  
Vol 2 (1) ◽  
pp. 476
Author(s):  
Ganies Riza Aristya ◽  
Rezika Alyza ◽  
Rosyidatul Khoiroh ◽  
Budi Setiadi Daryono

<p>The cultivated strawberries, Fragaria x ananassa and Fragaria vesca, are the most economically-important softfruit species. F x ananassa and F vesca, both diploid (2n=2x=14) relatives of the commercial octoploid strawberry, are an attractive model for functional genomics research in Rosaceae. Its small genome size, short reproductive cycle, and facile vegetative and seed propagation make F. x annassa and F.vesca a promising candidates for forward and reverse genetics experiments. In order to determine their genetic differences in more detail, chromosome characterization of the two strawberry cultivars was investigated. A method used for chromosome slides in this research was a squash method with modification in pre-treatment. The result showed Fragaria x ananassa had (2n = 4x = 28) chromosome number is 28 and Fragaria vesca had (2n = 2x = 14) chromosome number is 14. The time of mitotic that both strawberry cultivars was similar at 7 to 8.30 am. In addition, mixoploid cells were found in both strawberry cultivar indicating that these cultivars had been treated by mutagenic agents for a breeding program.</p><p><br /><strong>Keywords</strong> : Fragaria, chromosome, mitotic</p>


Soil Research ◽  
2012 ◽  
Vol 50 (7) ◽  
pp. 570 ◽  
Author(s):  
Jin-Hua Yuan ◽  
Ren-Kou Xu

The chemical compositions of biochars from ten crop residues generated at 350°C and their effects on chemical properties of acid soils from tropical and subtropical China were investigated. There was greater alkalinity and contents of base cations in the biochars from legume residues than from non-legume residues. Carbonates and organic anions of carboxyl and phenolic groups were the main forms of alkalis in the biochars, and their relative contributions to biochar alkalinity varied with crop residues. Incubation experiments indicated that biochar incorporation increased soil pH and soil exchangeable base cations and decreased soil exchangeable acidity. There were greater increases in soil pH and soil exchangeable base cations, and a greater decrease in soil exchangeable acidity, for biochars from legume than from non-legume residues. The biochars did not increase the cation exchange capacity (CEC) of soils with relatively high initial CEC but did increase the CEC of soils with relatively low initial CEC at an addition level of 1%. The incorporation of biochars from crop residues not only corrected soil acidity but also increased contents of potassium, magnesium, and calcium in these acid soils from tropical and subtropical regions and thus improved soil fertility.


2020 ◽  
Vol 10 (4) ◽  
pp. 623-636
Author(s):  
M.T. Ariza ◽  
L. Miranda ◽  
E. Martínez-Ferri ◽  
J.J. Medina ◽  
J.A. Gómez-Mora ◽  
...  

BACKGROUND: Strawberry (Fragaria x ananassa Duch.) is among the most widely consumed fruits in the world and its cultivation is increasing worldwide. This continuous increase in its cultivation acreage is concomitant with the development of new varieties by numerous breeding programs. Due to strawberry is a microclimatic crop, the behaviour of the cultivars could vary depending on many agronomical and environmental factors such as temperature or humidity. Thus, for some traits, data from a single crop season may not be enough to suspect the behaviour of a specific variety. OBJECTIVE: Generate information that allows knowing the consistency of different characteristics over time. METHODS: For four consecutive years, organoleptic and yield related traits were analysed in five strawberry cultivars. RESULTS: The overall result is a significant effect of genotype on all yield relates and organoleptic parameters studied. Our study also inferred an effect of environment, temperature and relative humidity, mainly on yield parameters. However, not all cultivars were similarly affected. CONCLUSIONS: With the information generated from this work, it will be possible to establish, based on the consistency of the cultivar trials over time, the suitability of using the results of a single season to predict the behaviour of a particular cultivar.


2005 ◽  
Vol 45 (4) ◽  
pp. 435 ◽  
Author(s):  
J. L. Cooper

Two forms of biosolids, with and without lime, were applied to acid soils at 2 sites in central New South Wales. Wheat and triticale were then grown on these sites to determine the effect of biosolids on crop growth and yield. The forms of biosolids used were dewatered sewage sludge cake, and N-Viro Soil which is a lime amended sewage sludge. Dewatered sewage sludge cake was applied at rates of 0, 6, 12 and 24 dry Mg/ha, and N-Viro soil at 0, 1.5, 3.0 and 4.5 dry Mg/ha. Biosolids produced grain yield increases of over 50% at both sites, with the largest yield increases at the highest rate of dewatered sewage sludge. Continued cropping at 1 of the sites showed that significant yield increases were still obtained 3 years after the initial application. The addition of lime and N-Viro Soil raised soil pH, and produced small but long lasting yield increases. However, the main benefit of biosolids seems to have come from the nutrients they supplied rather than changes in soil pH.


1985 ◽  
Vol 25 (1) ◽  
pp. 149 ◽  
Author(s):  
LJ Horsnell

The response of improved pastures to the application of superphosphate is low on the acid sedimentary soils, of the Southern Tablelands of New South Wales, which contain high levels of exchangeable aluminium. An investigation was made into the effect of surface-applied fertilizers on soil pH and on the establishment and growth of lucerne and phalaris on these soils. At 6 weeks after the application of gypsum, superphosphate, or superphosphate plus potassium sulfate, soil pH (H2O) had decreased markedly. This effect extended to a depth of 20 cm, but decreased with time. Initially, lime application increased the pH of the surface soil only. When superphosphate was applied with lime the pH of the soil under the lime layer decreased to the same level as that found in the soil treated with superphosphate alone. Lime, however, had penetrated into the subsoil 102 weeks after application and substantially more so after 13 years. Soil pH (0.01 M CaCl2) was not depressed by the application of fertilizers. Growth and persistence of both species in the first summer were poor, but growth responses to phosphorus, lime and nitrogen increased after the first year. Lucerne showed large growth responses to lime, greater than those found on plots receiving nitrogen fertilizer. Lime reduced aluminium levels both in lucerne plants and in soil. It is suggested that the slow penetration of lime into the soil, the relatively quick effect of superphosphate in increasing subsoil acidity, and high soil aluminium levels are together responsible for the poor persistence and slow growth of both lucerne and phalaris in the early stages. The subsequent large dry matter responses of lucerne to lime are possibly related to increased nitrogen fixation and a lowering of plant and soil aluminium levels. It is suggested that the lime responses of phalaris are also related to lower aluminium levels.


2020 ◽  
Vol 52 (2) ◽  
pp. 93-101
Author(s):  
Andrey Litvinovich ◽  
Olga Pavlova ◽  
Anton Lavrishchev ◽  
Vladimir Bure ◽  
Elmira Saljnikov
Keyword(s):  
Soil Ph ◽  

Sign in / Sign up

Export Citation Format

Share Document