scholarly journals Forms of inorganic phosphorus in soil under different long term soil tillage systems and winter crops

2012 ◽  
Vol 36 (1) ◽  
pp. 271-282 ◽  
Author(s):  
Tales Tiecher ◽  
Danilo Rheinheimer dos Santos ◽  
João Kaminski ◽  
Ademir Calegari

The cultivation of crops with different capacity of P uptake and use under long-term soil tillage systems can affect the distribution of P cycling and inorganic forms in the soil, as a result of higher or lower use efficiency of P applied in fertilizers. The purpose of this study was to evaluate the effect of long-term cultivation of different winter species under tillage systems on the distribution of inorganic P forms in the soil. In 1986, the experiment was initiated with six winter crops (blue lupin, hairy vetch, oat, oilseed radish, wheat and fallow) on a Rhodic Hapludox in southwestern Paraná, under no-tillage (NT) and conventional tillage (CT). The application of phosphate fertilizer in NT rows increased inorganic P in the labile and moderately labile forms, and soil disturbance in CT redistributed the applied P in the deeper layers, increasing the moderately labile P concentration in the subsurface layers. Black oat and blue lupin were the most efficient P-recyclers and under NT, they increased the labile P content in the soil surface layers.

2021 ◽  
Vol 3 ◽  
Author(s):  
Rafael de Souza Nunes ◽  
Djalma Martinhão Gomes de Sousa ◽  
Wenceslau J. Goedert ◽  
Luiz Eduardo Zancanaro de Oliveira ◽  
Thamires Dutra Pinheiro

We investigated labile P and roots distribution in the soil profile and their effect on phosphorus uptake and soybean and corn yield under different tillage systems and phosphate fertilization managements. In a long-term experiment fertilized with triple superphosphate (TSP) or reactive phosphate rock (RPR), where the fertilizer was band-applied in the crop row or broadcasted under conventional tillage (CT) or no-tillage (NT), we evaluated labile P (Bray-1) and root density distribution in depth, and crop yield, biomass production and P uptake by soybean (16th crop) and corn (17th crop). The soil disturbance in CT promoted more homogeneous soil P distribution while in NT there was a strong gradient in depth, with nutrient accumulation in the fertilizer application zone. In general, the average content of P in the 0–20 cm layer was similar for the two soil management systems and for the two application methods, but higher for TSP in relation to RPR. Root distribution of soybeans in NT and corn in both tillage systems showed a strong relationship with soil P distribution. The production of biomass, P uptake and grain yield of soybean in CT was influenced by phosphate fertilization management and generally presented lower performance than in NT, what did not occur for corn possibly due to a better P uptake efficiency compared to that of soybean. Greater stratification on the distribution of soil P and soybean and corn roots in NT did not represent any limitation on the nutrient uptake and yield of these crops, not even in the extreme case where the fertilizer was continuously broadcast on the soil surface. The influence of soil tillage management and phosphate fertilization was more evident in soybeans than corn.


2014 ◽  
Vol 38 (3) ◽  
pp. 972-979 ◽  
Author(s):  
Arminda Moreira de Carvalho ◽  
Mercedes Maria da Cunha Bustamante ◽  
Zayra Azeredo do Prado Almondes ◽  
Cícero Célio de Figueiredo

Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo) from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L.), and Raphanus sativus L.) were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP) was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.


2009 ◽  
Vol 33 (5) ◽  
pp. 1237-1247 ◽  
Author(s):  
Sérgio Ely Valadão Gigante de Andrade Costa ◽  
Edicarlos Damaceno de Souza ◽  
Ibanor Anghinoni ◽  
João Paulo Cassol Flores ◽  
Eduardo Giacomelli Cao ◽  
...  

Soil and fertilizer management during cultivation can affect crop productivity and profitability. Long-term experiments are therefore necessary to determine the dynamics of nutrient and root distribution as related to soil profile, as well as the effects on nutrient uptake and crop growth. An 18-year experiment was conducted at the Federal University of Rio Grande do Sul State (UFRGS), in Eldorado do Sul, Brazil, on Rhodic Paleudult soil. Black oat and vetch were planted in the winter and corn in the summer. The soil management methods were conventional, involving no-tillage and strip tillage techniques and broadcast, row-and strip-applied fertilizer placement (triple superphosphate). Available P (Mehlich-1) and root distribution were determined in soil monoliths during the corn grain filling period. Corn shoot dry matter production and P accumulation during the 2006/2007 growing season were determined and the efficiency of P utilization calculated. Regardless of the degree of soil mobilization, P and roots were accumulated in the fertilized zone with time, mainly in the surface layer (0-10 cm). Root distribution followed P distribution for all tillage systems and fertilizer treatments. Under no-tillage, independent of the fertilizer placement, the corn plants developed more roots than in the other tillage systems. Although soil tillage systems and fertilizer treatments affected P and root distribution throughout the soil profile, as well as P absorption and corn growth, the efficiency of P utilization was not affected.


2017 ◽  
Vol 30 (2) ◽  
pp. 343-352 ◽  
Author(s):  
JOSÉ DE SOUZA OLIVEIRA FILHO ◽  
MARCOS GERVASIO PEREIRA ◽  
BOANERGES FREIRE DE AQUINO ◽  
THALES VINÍCIUS DE ARAÚJO VIANA

ABSTRACT The objective of this study was to evaluate the adsorption of phosphorus (P) and changes in the concentrations of organic and inorganic forms of P in a Neossolo Quartzarênico (Typic Quartzipsamment) after 9 years of successive cultivation with sugar cane without burning to harvest. Therefore, two areas, one in which cane sugar was planted and a native forest reference area, located in the municipality of Paraipaba-CE, were selected. In each area, samples were collected at depths of 0−0.025, 0.025−0.05, 0.05−0.10, 0.10−0.20, and 0.20−0.30 m, and the levels of organic (Po) and inorganic (Pi) phosphorus obtained by sequential extraction, the remaining phosphorus, and the maximum adsorption capacity of phosphorus by the soil were determined. In general, the permanence of straw on the soil surface under sugarcane cultivation promoted the maintenance of Po levels in the surface layers of the profile. The Po accumulated predominantly in the Po fraction extracted with sodium bicarbonate in both areas. Regarding the Pi content, changes were more evident during cultivation due to the effect of successive phosphate fertilizer applications. The fraction extracted with 0.1 mol L -1 sodium hydroxide was the most representative, with the highest levels of P uptake. P adsorption was influenced by the initial content of the nutrient in the soil and no relationship between P adsorption and organic matter content was observed. The highest level of adsorption was observed in the bottom layer of the forest area (133.3 mg kg -1) and the lowest level of adsorption was observed on the surface layer of the area under sugarcane cultivation (59.5 kg mg-1).


Soil Research ◽  
1988 ◽  
Vol 26 (2) ◽  
pp. 343 ◽  
Author(s):  
MJ Mclaughlin ◽  
AM Alston ◽  
JK Martin

The incorporation of 32P and 33P from 33P-labelled fertilizer and 33P-labelled pasture residues into organic and inorganic fractions of soil P was studied in a solonized brown soil (Calcixerollic xerochrept) cropped to wheat (Triticum aestivum). Most of the plant residue 33P was present as inorganic P at the time it was added to the soil, but only 7 days later almost 40% had been incorporated into organic P fractions of the soil. As the fertilizer was banded near the soil surface at sowing, little of the 32P from the 32P-labelled fertilizer was incorporated into organic forms, even after 95 days. From a knowledge of the P uptake by the plants and microorganisms, an integrated P cycle for this soil under wheat-pasture rotations was developed. We propose that fertilization of the pasture phase of the rotation stimulates the build-up of residual inorganic and organic P, while fertilization of the wheat phase predominantly stimulates the accumulation of inorganic forms of P in the soil.


2008 ◽  
Vol 32 (4) ◽  
pp. 1437-1446 ◽  
Author(s):  
Milton da Veiga ◽  
Dalvan José Reinert ◽  
José Miguel Reichert ◽  
Douglas Rodrigo Kaiser

Soil tillage promotes changes in soil structure. The magnitude of the changes varies with the nature of the soil, tillage system and soil water content and decreases over time after tillage. The objective of this study was to evaluate short-term (one year period) and long-term (nine year period) effects of soil tillage and nutrient sources on some physical properties of a very clayey Hapludox. Five tillage systems were evaluated: no-till (NT), chisel plow + one secondary disking (CP), primary + two (secondary) diskings (CT), CT with burning of crop residues (CTb), and CT with removal of crop residues from the field (CTr), in combination with five nutrient sources: control without nutrient application (C); mineral fertilizers, according to technical recommendations for each crop (MF); 5 Mg ha-1 yr-1 of poultry litter (wetmatter) (PL); 60 m³ ha-1 yr-1 of cattle slurry (CS) and; 40 m³ ha-1 yr-1 of swine slurry (SS). Bulk density (BD), total porosity (TP), and parameters related to the water retention curve (macroporosity, mesoporosity and microporosity) were determined after nine years and at five sampling dates during the tenth year of the experiment. Soil physical properties were tillage and time-dependent. Tilled treatments increased total porosity and macroporosity, and reduced bulk density in the surface layer (0.00-0.05 m), but this effect decreased over time after tillage operations due to natural soil reconsolidation, since no external stress was applied in this period. Changes in pore size distribution were more pronounced in larger and medium pore diameter classes. The bulk density was greatest in intermediate layers in all tillage treatments (0.05-0.10 and 0.12-0.17 m) and decreased down to the deepest layer (0.27-0.32 m), indicating a more compacted layer around 0.05-0.20 m. Nutrient sources did not significantly affect soil physical and hydraulic properties studied.


2013 ◽  
Vol 30 (3) ◽  
pp. 211-222 ◽  
Author(s):  
Courtney Gallaher ◽  
Sieglinde S. Snapp

AbstractLegumes have been shown to enhance bioavailability of phosphorus (P) from sparingly soluble pools, yet this functional trait remains underutilized in agriculture, and is untested at decadal scales. Management and legume presence effects on temporal soil properties were evaluated in a 17-year field crop experiment using soil samples collected in 1992, 2000 and 2006. Management systems compared included: (1) conventional corn–soybean–wheat rotation (C–S–W), (2) organic (C–S–W+red clover), (3) alfalfa and (4) early successional field. To evaluate the effects of long-term management versus recent management (residues and P fertilizer) on P and bio-availability to soybean, subplots of soybean were established with and without P-fertilizer (30 kg P ha−1), and compared to subplots and main plot with the long-term system. We evaluated soil properties (C, total P, Bray extractable inorganic P, particulate organic matter phosphorus) and soybean P uptake, biomass and yield. Recent fertilizer P inputs had no detectable influence on soil P, and total soil P stayed stable at ~350 mg P kg−1, whereas inorganic P (Pi) declined from an initial value of 54 to an average of 35 mg P kg−1. A P balance was constructed and showed a net loss of −96.7 kg P ha−1 yr−1 for the organic system, yet Bray-Pi and soybean P uptake were maintained under organic production at similar levels to the conventional, fertilized system. Particulate organic matter P was 57, 82 and 128% higher in organic, alfalfa and successional treatments, respectively, compared to conventional. A similar pattern was observed for soil C, soybean yield and bioavailable P, which were 20–50% higher in the organic, alfalfa and successional systems relative to conventional. This study provides evidence that long-term management history influences bioavailability of P.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2278
Author(s):  
Robert B. Beelman ◽  
John P. Richie ◽  
Allen T. Phillips ◽  
Michael D. Kalaras ◽  
Dongxiao Sun ◽  
...  

Ergothioneine (ERGO) is a potent antioxidant and anti-inflammatory amino acid that is produced in nature mainly by non-yeast fungi, cyanobacteria, and mycobacteria. Mounting evidence suggests that ERGO can be considered a longevity vitamin that can mitigate chronic diseases of aging and thereby increase life expectancy. Humans must obtain ERGO from their diet, and it is therefore important to know which foods contain it. Although ERGO is not produced by plants it is found in plant products such as grain, apparently because detrital or symbiotic soil fungi pass on ERGO to plants through their roots. Besides differences between plant species in their ability to accumulate ERGO, how they are managed might also affect its concentration. Soil tillage has been shown to reduce soil fungal biomass, and therefore ERGO contents in maize, soybeans, and oats grown in soil managed with annual moldboard plowing (most intensive), chisel/disking (less intensive), or no-tillage (least intensive) in crop rotation were compared. ERGO concentrations declined in all three crops as tillage intensity increased, with reductions from no till to moldboard plow of approximately 30% in all three crops. Because crop yield was also negatively impacted by intensive tillage, ERGO yield per hectare was reduced even more due to increasing tillage intensity. This study is one of the first to show that soil health improving practices that minimize soil disturbance can directly enhance a key dietary factor associated with long-term human health.


2014 ◽  
Vol 27 (4) ◽  
pp. 1141-1150 ◽  
Author(s):  
Elcio L. Balota ◽  
Oswaldo Machineski ◽  
Carolina Honda ◽  
Ines F. U. Yada ◽  
Graziela M. C. Barbosa ◽  
...  

2016 ◽  
Vol 8 (2) ◽  
pp. 98 ◽  
Author(s):  
Ahmed Abed Gatea Al-Shammary ◽  
Jamal Naser Abedalrahman Al-Sadoon ◽  
Nabil Raheem Lahmod

<p>The soil tillage system can notably influence soil solarization system under dry land farming in semiarid areas. Field experiments were conducted from 6/6/2013 to 1/9/2013, to evaluate the effects of soil tillage system, soil solarization system and fertilizer type on soil temperature at three depths as well as influence at gap between the mulch and soil surface. The experiment included three experimental factors. The first factor, soil tillage systems (moldboard plowing followed by spring disking {MP},<em> </em>Rotary plough {RP}), the second factor represent the soil mulching systems in three levels (transparent mulch, black mulch and without mulch {control}), the third factor includes three fertilizers types (compose fertilizer; in compose fertilizer and chemical fertilizer). The results showed that the experimental factors effects on soil temperature, when used soil tillage system (MP), the higher soil temperature recorded at 10 cm depth ,its value 70 <sup>o</sup>C ( time 11 am) when mean solar radiation 1146 w/m<sup>2</sup> in soil transparent mulching system and chemical fertilizer, as well as for treatment soil black mulch and compose fertilizer, but the lower soil temperature recorded at 30 cm depth, its value 35.8 <sup>o</sup>C (time 1 pm) when mean solar radiation 1147 w/m<sup>2</sup> in soil transparent mulch and chemical fertilizer treatment. The highest soil temperature recorded at 10 cm depth, when used soil tillage system (RP), its value 78.3 <sup>o</sup>C (time 11 am) when mean solar radiation 1125 w/m<sup>2</sup> in soil black mulch and chemical fertilizer, but the low soil temperature recorded at 30 cm depth, its value 41 <sup>o</sup>C (time 3 pm) when mean solar radiation 900 w/m<sup>2</sup> in soil transparent mulch and compose fertilizer treatment. Moreover, the results showed the maximum temperature at gap between the mulch and the soil surface occurs at noon. Addition the obtained results demonstrated that all soil mulching system raised soil temperature substantially compared with without mulched.</p>


Sign in / Sign up

Export Citation Format

Share Document