scholarly journals Weed Growth and Dry Matter Partition Under Water Restriction

2016 ◽  
Vol 34 (4) ◽  
pp. 701-708 ◽  
Author(s):  
M.F.P. LIMA ◽  
J.L.D. DOMBROSKI ◽  
F.C.L. FREITAS ◽  
J.R.S. PINTO ◽  
D.V. SILVA

ABSTRACT The capacity of a weed to adapt to the restriction of growth factors is directly related to its ability to compete for those resources with the cultivated species. An experiment was conducted to evaluate the effect of water restriction on the growth and biomass partitioning of four species of weeds. The experimental design used randomized blocks, with five replications. The treatments were arranged in a 4 x 2 factorial, with the first factor being the weed species (Waltheria indica, Crotalaria retusa, Cleome affinis and Commelina benghalensis) and the second, two water regimes: daily irrigation (Irr) and water restriction (WR). The number of leaves, leaf area, dry mass of the plant and its parts (root, stem and leaf), and the mass distribution among different organs (roots, leaves and stems) were determined. The water deficit in the soil increased the root dry matter for C. retusa, W. indica and C. benghalensis, however, it did not alter the mass of the stem of the weeds. C. retusa and W. indica suffered a reduction on the number of leaves, leaf area, dry matter of the leaves and the plant dry matter under water deficit. W. indica and C. retusa had a reduction on the percentage of biomass allocated to the leaves, and an increment on the percentage of the roots mass, while C. benghalensis and C. affinis had an increase only on the roots mass.

2020 ◽  
Vol 38 ◽  
Author(s):  
M.O. CABRAL ◽  
F.L. OLIVEIRA ◽  
L.P. DALVI ◽  
A.G. TEIXEIRA ◽  
L.J.F.N. ROCHA ◽  
...  

ABSTRACT: The consumption of yacon has been increasing around the world due to the nutritional and pharmaceutical properties of this plant. The growing commercial interest in yacon (Smallanthus sonchifolius) generates a demand for crop management research studies, including the effect of weed competition on yacon, which was not yet studied. Thus, this study was performed with the objective of evaluating the effects of weed competition on yacon development and growth. The experimental design was completely randomized with four treatments and seven replicates. Treatments were yacon with the interference of four weed species: Cyperus rotundus L. (nutgrass), Commelina benghalensis L. (tropical spiderwort), Amaranthus viridis L. (slender amaranth) and Bidens pilosa L. (hairy beggarticks). The experiment was conducted in a greenhouse, using 10 dm3 pots. Plant height, number of leaves, number of stems, leaf area, fresh and dry mass weight (total and partial), and chlorophyll A, B and total were evaluated. The weed competition resulted in a decrease in the yacon development (height, number of leaves, number of stems, leaf area), photosynthetic rate (decreased chlorophyll content A, B and total) and yield, as also decreased the accumulation of fresh and dry biomass of tuberous roots. C. benghalensis L. and A. viridis L. were the weeds most affecting the development and growth of yacon.


2019 ◽  
Vol 32 (2) ◽  
pp. 318-328 ◽  
Author(s):  
MURILO MEIRA SOARES ◽  
CLÁUDIA DAIANNY MELO FREITAS ◽  
FERNANDO SARMENTO DE OLIVEIRA ◽  
HÉLIDA CAMPOS DE MESQUITA ◽  
TATIANE SEVERO SILVA ◽  
...  

ABSTRACT In the agricultural environment, the occurrence of biotic and abiotic stresses, such as weed interference and soil water deficit is common. However, little is known about the effects of the interaction of these stresses on the growth of cultivated crops and weed species. Thus, the objective of this study was to evaluate the effects of competition and water deficiency on the growth of sunflowers and weeds. The experiment was performed in a randomized block design with four replications. The treatments were arranged in a 5 × 2 factorial design, with the first factor corresponding to the competition arrangements between the species (sunflower + Waltheria indica; sunflower + Amaranthus spinosus; and sunflower, W. indica, and A. spinosus in monoculture without competition) and the second factor corresponding to water regimes (irrigated and water deficit). The water deficit regime was established when the sunflower plants had six expanded leaves (V6 stage) and was maintained until the rate of CO2 assimilation of the plants reached values close to zero (6 days), after which irrigation was resumed and maintained until 40 days after emergence, when the plants were collected and evaluated. The growth components evaluated were plant height, leaf area, dry leaf mass, dry stem mass, dry root mass, and total dry mass. Competition between plants decreased sunflower, W. indica, and A. spinosus growth. W. indica and A. spinosus aggravated the negative effects of water deficiency on sunflower growth. The water deficit regime did not affect the growth of W. indica. A. spinosus was more competitive with the sunflower than was W. indica.


2008 ◽  
Vol 30 (2) ◽  
pp. 402-408 ◽  
Author(s):  
Sandra Liliana Flórez ◽  
Diego Miranda Lasprilla ◽  
Bernardo Chaves ◽  
Gerhard Fischer ◽  
Stsnislav Magnitskiy

The effects of 0, 30 and 60 mM NaCl and substrates (red peat, sand or 3:1:1 [w/w] mixture of peat, sand, or soil) on vegetative growth of lulo, an Andean fruit species, during 12 weeks were studied. The experiment was carried out by using 2000 cm³ of polypropylene plastic pots under greenhouse conditions. Plant height, number of leaves and nodes, leaf area, total plant dry matter (DM), and shoot/root ratio were evaluated. With the increase of salt concentration, the plant height, the number of leaves and nodes, the leaf areas and plant dry mass DM decreased, whereas shoot/root ratio increased. Sand grown lulo plants were most affected by salinity and presented total mortality at 60 mM NaCl. On the other hand, plants held either in peat or in substrate mixture developed larger height, greater leaf and node numbers, higher leaf area and dry matter content. Shoot/root ratio in control (soil) and sand-grown plants (30 mM NaCl) was lower.


2014 ◽  
Vol 32 (3) ◽  
pp. 515-520 ◽  
Author(s):  
R.M. Faria ◽  
R.E. Barros ◽  
L.D. Tuffi Santos

Plants kept under competition tend to modify their morphology to optimize the use of production factors. This study aimed to evaluate the effects of competition between transgenic maize and five weed species on the growth and yield of transgenic maize hybrid. The experiment used a randomized block design with four replicates in a factorial 5 x 2 + 6 scheme consisting of a combination of maize under competition with five weed species (Bidens pilosa, Commelina benghalensis, Brachiaria brizantha, Sorghum arundinaceum and Ipomoea triloba) in two weed densities (15 or 30 plants m-2) plus six treatments corresponding to maize and weed species without competition. All the means for dry matter accumulated by maize plants in the stem and leaf in the density of 15 plants m ² were higher than the means for plants in coexistence with 30 plants m-². Number of kernels, diameter and length of cob were not affected by competition with weeds. The weeds that most interfered with maize biomass production were S.arundinaceum and B.brizantha. Leaf dry mass accumulation was more sensitive than the production of stem. It was observed that maize was usually very competitive with weeds, and there was a strong decrease in dry matter accumulation of all the weeds in the study when in coexistence with the crop.


2018 ◽  
Vol 8 (3) ◽  
pp. 486-492 ◽  
Author(s):  
Mario Leno Martins Véras ◽  
Rafaela Da Silva Arruda ◽  
Lunara De Sousa Alves ◽  
José Sebastião de Melo Filho ◽  
Toni Halan Da Silva Irineu ◽  
...  

Pitombeira is a native fruit tree from Amazon and is exploited in an extractive way. Currently, there is no commercial cultivation of this crop since there are no technologies for cultivation, propagation methods, fertilization and irrigation. In this context, the aim of this study was to evaluate growth and dry matter of pitombeira seedlings (Talisia esculenta (A. St.-Hill.) Radlk.) under salinity levels with or without bovine biofertilizer. The experiment was performed in a nursery at the State University of Paraíba (UEPB), Campus IV, in Catolé do Rocha, Paraíba, from September to December 2015. It was adopted a completely randomized design (CRD) with 10 treatments and 4 repetitions, in factorial arrangement 5 x 2, corresponding to 5 salinity levels: (0,8; 2; 4; 6 e 8 dS m-1) with or without bovine biofertilization. Plant height, stem diameter, number of leaves, leaf area, total leaf area, Dickson quality index, dry mass of root, stem, leaf and the whole plant were analyzed. The increase in salinity provides a decrease in growth and dry matter of pitombeira seedlings. The use of biofertilizers mitigates the harmful effects of salinity on pitombeira seedlings.


2017 ◽  
Vol 30 (2) ◽  
pp. 412-419 ◽  
Author(s):  
ARTHUR BERNARDES CECÍLIO FILHO ◽  
ALEXSON FILGUEIRAS DUTRA ◽  
GILSON SILVERIO DA SILVA

ABSTRACT The intensive cultivation of vegetables with frequent chemical fertilization may cause accumulation of nutrients in the soil. This, in turn, may reduce crop yields and damage the environment due to contamination of ground water and rivers. Thus, to increase the effects of P (0, 100, 200, 300 and 400 kg ha -1 of P2O5) and K (0, 60, 120, 180 and 240 kg ha-1 of K2O) doses on the growth and productivity of radish cultivars (Sakata 19 and Sakata 25) in a soil with high levels of these nutrients, two experiments were conducted in randomized blocks with the factors cultivars and doses arranged in a 2 x 5 factorial design with three replications. Number of leaves per plant, leaf area, shoot and root dry mass, total and commercial productivity, percentage of cracked roots and P and K contents in the plant and in the soil were evaluated. The Sakata 19 cultivar performed better than the Sakata 25 in both experiments. The fertilization with P or K did not influence the growth and the productivity of both radish cultivars. Therefore, both cultivars of radish evaluated do not need to be fertilized with P and K when planted in a Latosol with high levels of these nutrients.


2017 ◽  
Vol 9 (11) ◽  
pp. 283 ◽  
Author(s):  
Renata V. Menezes ◽  
André D. Azevedo Neto ◽  
Hans R. Gheyi ◽  
Alide M. W. Cova ◽  
Hewsley H. B. Silva

Basil (Ocimum basilicum L.) is a medicinal species of Lamiaceae family, popularly known for its multiple benefits and high levels of volatile compounds. The species is considered to be one of the most essential oil producing plants. Also cultivated in Brazil as a condiment plant in home gardens. The objective of this study was to evaluate the effect of salinity on the growth of basil in nutrient solution of Furlani and to identify variables related to the salinity tolerance in this species. The first assay was performed with variation of five saline levels (0 - control, 20, 40, 60 and 80 mM NaCl). In the second assay six genotypes were evaluated in two salinity levels 0 and 80 mM NaCl. The height, stem diameter, number of leaves, dry mass and inorganic solutes in different organs, photosynthetic pigments, absolute membrane integrity and relative water content were evaluated. All biometric variables in basil were significantly reduced by salinity. Dry matter yield and percentage of membrane integrity were the variables that best discriminated the characteristics of salinity tolerance among the studied basil genotypes. Basil genotypes showed a differentiated tolerance among the genotypes, the ‘Toscano folha de alface’ being considered as the most tolerant and ‘Gennaro de menta’ as the most sensitive, among the species studied.


2010 ◽  
Vol 39 (8) ◽  
pp. 1666-1675 ◽  
Author(s):  
Marcio Mahmoud Megda ◽  
Francisco Antonio Monteiro

The objective of this work was to study morphogenic characteristics, and dry matter production of roots and shoots of marandu palisadegrass (Brachiaria brizantha cv. Marandu) submitted to combinations of nitrogen and potassium, in a nutritive solution, employing silica as substrate. The experiment was carried out in a greenhouse during the summer. It was used a 5² fractionated factorial scheme with 13 combinations of nitrogen and potassium, which were distributed in a randomized block design, with four replications. The nitrogen × potassium interaction was significant for the number of tillers and leaves, for leaf area, for shoots and root section dry mass, for total length and surface and specific length and surface in the roots. Production of aerial part dry mass positively correlated with the number of tillers and leaves and grass leaf area. Nitrogen rates modulated the root system development, and the root specific length and surface decreased when high rates of nitrogen and potassium were supllied. Nitrogen and potassium influence Marandu palisadegrass morphogenic characteristics, which are determinant for grass dry matter production.


2010 ◽  
Vol 28 (3) ◽  
pp. 515-522 ◽  
Author(s):  
A.C.R. Dias ◽  
S.J.P. Carvalho ◽  
L.W. Marcolini ◽  
M.S.C. Melo ◽  
P.J. Christoffoleti

Weeds compete with field crops mainly for water, light and nutrients, and the degree of competition is affected by the weed density and the intrinsic competitive ability of each plant species in coexistence. The objective of this research was to compare the competitiveness of alexandergrass (Brachiaria plantaginea) or Bengal dayflower (Commelina benghalensis) in coexistence with soybean, cv. M-Soy 8045. A factorial experiment (2 x 5) with two weed species and five competition proportions was carried out in a completely randomized design with four replicates. Proportions were based on a replacement series competition design, always maintaining the total density of four plants per 10 L plastic pots, which corresponded to 60 plants m ². The weed-crop proportions were: 0:4; 1:3; 2:2; 3:1; 4:0; that corresponded to the proportion of 100, 75, 50, 25 and 0% of soybean plants and the opposite for weeds, B. plantaginea or C. benghalensis plants. Leaf area, shoot dry mass of the weeds and soybean and number of soybean trifoliate leaves were evaluated when the soybean reached the phenologic stage of full flowering. B. plantaginea was a better competitor than soybean plants. Otherwise, C. benghalensis revealed a similar competitive ability that of the soybean. In both cases, there were evidences that intraspecific competition was more important.


2014 ◽  
Vol 3 (3) ◽  
pp. 24-35
Author(s):  
IN Abdullahi ◽  
PO Anyaegbu ◽  
D Aliagbor

The research work conducted at the Teaching and Research Farm of University of Abuja was aimed at assessing the effect of Moringa oleifera, selected leguminous plants and inorganic fertilizer on the performance of orange fleshed sweet potato in Alley Cropping System. Randomized Complete Block Design (RCBD) using five treatments with three replications was applied. Data collected include: percentage survival of sweet potato, length per vine (cm), number of leaves per vine, leaf area of sweet potato, weed dry matter (g/m2), yield of sweet potato roots. Highest number of leaves (28) per plant was recorded in the control plot while the plots with NPK fertilizer had the highest length per vine (94.55cm) though not significantly (p>0.05) different from others. Higher percent survival (88%) of sweet potato was recorded from control plots. Stands grown in Arachis hypogeae plots produced the highest leaf area (0.202m2) while plots in which NPK fertilizer was applied experienced highest weed dry matter (4.083g/m2) although highest root yield (1.2t/ha) was recorded from the plots with NPK fertilizer. DOI: http://dx.doi.org/10.3126/ije.v3i3.11061 International Journal of Environment Vol.3(3) 2014: 24-35


Sign in / Sign up

Export Citation Format

Share Document