scholarly journals Contents of Pigments and Activity of Antioxidant Enzymes in Rice Plants Pre-Treated with Sodium Nitroprusside and Exposed to Clomazone

2019 ◽  
Vol 37 ◽  
Author(s):  
K.S. SILVA ◽  
L.A. TABALDI ◽  
L.V. ROSSATO ◽  
B.M. CAVICHIOLI ◽  
V.B. BASÍLIO ◽  
...  

ABSTRACT: The pre-treatment of rice seeds with sodium nitroprusside (SNP) was used to investigate the effect of exogenous nitric oxide on the pigment content and the activity of antioxidant enzymes during the inhibition of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway by the herbicide clomazone. The seeds were soaked in SNP solution (200 mM) for one and 10 hours and sprayed with clomazone, at post-seeding and at the needle-point, with 612 (experiment 1) and 1,224 g a.i. ha-1 (experiment 2). The control of both factors received distilled water. Carotenoids, chlorophylls a, b and total, superoxide dismutase (SOD), guaiacol peroxidase (POD) and the correlation between the variables were evaluated in the shoot of the plants. When compared to the control (no SNP), the imbibition for one hour increased carotenoid and total chlorophyll content by 24 and 54%, respectively, in experiment 1, where clomazone was applied in post-seeding. In the absence of the herbicide, the values were 37 and 59% higher. The SOD and POD activity, respectively, was increased by 48 and 51%, when the seeds were soaked for 10 hours and exposed to 612 g a.i. ha-1 of clomazone in post-seeding application. In a similar condition, in experiment 2, there were no changes in enzyme activity. Seed pretreatment with SNP increases the carotenoid and chlorophyll contents in rice plants, even with the inhibition of the MEP pathway by clomazone. The behavior of the SOD and POD activity indicates that other mechanisms besides the increase in the photosynthetic pigment contents are involved in the detoxification of the reactive oxygen species induced by the mode of action of clomazone.

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0248207
Author(s):  
Zahra Jabeen ◽  
Hafiza Asma Fayyaz ◽  
Faiza Irshad ◽  
Nazim Hussain ◽  
Muhammad Nadeem Hassan ◽  
...  

Salinity is among the major abiotic stresses negatively affecting the growth and productivity of crop plants. Sodium nitroprusside (SNP) -an external nitric oxide (NO) donor- has been found effective to impart salinity tolerance to plants. Soybean (Glycine max L.) is widely cultivated around the world; however, salinity stress hampers its growth and productivity. Therefore, the current study evaluated the role of SNP in improving morphological, physiological and biochemical attributes of soybean under salinity stress. Data relating to biomass, chlorophyll and malondialdehyde (MDA) contents, activities of various antioxidant enzymes, ion content and ultrastructural analysis were collected. The SNP application ameliorated the negative effects of salinity stress to significant extent by regulating antioxidant mechanism. Root and shoot length, fresh and dry weight, chlorophyll contents, activities of various antioxidant enzymes, i.e., catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) were improved with SNP application under salinity stress compared to control treatment. Similarly, plants treated with SNP observed less damage to cell organelles of roots and leaves under salinity stress. The results revealed pivotal functions of SNP in salinity tolerance of soybean, including cell wall repair, sequestration of sodium ion in the vacuole and maintenance of normal chloroplasts with no swelling of thylakoids. Minor distortions of cell membrane and large number of starch grains indicates an increase in the photosynthetic activity. Therefore, SNP can be used as a regulator to improve the salinity tolerance of soybean in salt affected soils.


Author(s):  
O. I. Horielova ◽  
◽  
N. I. Ryabchun ◽  
M. A. Shkliarevskyi ◽  
A. M. Reznik ◽  
...  

Along with specific adaptive reactions, universal defense reactions, in particular activation of antioxidant system, are of great importance for plant survival under cold conditions. We have studied a relationship among the content of low-molecular-weight protective compounds with antioxidant properties (proline, soluble carbohydrates, flavonoids), the activity of antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase) in seedlings of winter wheat, rye and triticale, and frost resistance of etiolated seedlings and adult plants at tillering stage. It was found that there was a fairly close correlation between the frost resistance of seedlings and adult cereal plants (r = 0,78). It was shown that a pronounced relationship between individual indicators of antioxidant system functioning in unhardened seedlings and their frost resistance was not found. After 6-day hardening of seedlings at 2-4°C, there was a high correlation between the total indicator of the enzymatic antioxidant system (the sum of normalized indicators of superoxide dismutase, peroxidase, and catalase activity) and their frost resistance (r = 0,86), but the correlation coefficient of this index with frost resistance of plants in tillering phase was significantly lower (r = 0,47). At the same time, a high correlation was found between the content of low-molecular-weight protectors in hardened seedlings and frost resistance of tillering adult plants (r = 0.89). The closest correlation was observed between the integral normalized indicator, comprising the sum of normalized values of antioxidant enzymes activity and the content of low-molecular-weight protectors in hardened seedlings, and frost resistance of seedlings (r = 0,94) and plants in tillering phase (r = 0,89). A presence of specific features in the functioning of antioxidant system during cold adaptation of cereal seedlings was established. Rye is characterized by a high content of low-molecular-weight protective compounds; at the same time, increased activity of antioxidant enzymes - superoxide dismutase and catalase - was noted in wheat seedlings. In triticale, depending on the genotype, the values of both enzymatic antioxidant activity and the content of low-molecular-weight protectors varied.


2021 ◽  
pp. 116992
Author(s):  
Flávia Raphaela Carvalho Miranda Guedes ◽  
Camille Ferreira Maia ◽  
Breno Ricardo Serrão da Silva ◽  
Bruno Lemos Batista ◽  
Mohammed Nasser Alyemeni ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chiemeka Lynda Umenwanne ◽  
Martins Obinna Ogugofor ◽  
Obioma U. Njoku

Abstract Background Cardiovascular diseases have continued to be the leading cause of death globally. In addition, some of the drugs used in the treatment of the diseases present some adverse effects which limit the usefulness of such drugs. Thus, there is a need for novel drugs whose side effect is either minimal or non-existent. The presence of bioactive compounds in Cola hispida leaf is of great significance in the treatment and management of cardiovascular conditions. This study investigated the cardio-protective potential against doxorubicin (Dox)-induced cardiac infarction in rats. Results Dox induction resulted to muscle fiber degeneration in Dox-treated rats hence revealed significant (p < 0.05) elevation in the serum level of cardio biomarker enzymes and lipid peroxidation profile while significant (p < 0.05) fall in cardiac enzymatic antioxidant levels were observed relative to the normal control. Pre-treatment with ethyl acetate fraction of Cola hispida leaf expressed cardio-protective potentials against Dox-induced cardiotoxicity by significantly (p < 0.05) lowering the levels of cardiac biomarker enzymes towards normal, building up the activities of subdued antioxidant enzymes and depleting its malondialdehyde level. Histopathology photomicrograph of the heart tissues expressed myxomatous degeneration but was ameliorated through the administration of the fraction. Conclusion In accordance with the findings from this study, the administration of ethyl acetate fraction of Cola hispida leaf is effective against Dox-induced redox imbalance due to its enriched antioxidant phytoconstituents.


Author(s):  
Alexandr I. Kokorev ◽  
◽  
Yuriy E. Kolupaev ◽  
Maxim A. Shkliarevskyi ◽  
Anna A. Lugovaya ◽  
...  

Polyamines are plant metabolites involved in many processes under physiologically normal and stressful conditions. Cadaverine is one of the least studied plant polyamines. The relationship between its physiological effects and the formation of signaling mediators, in particular, reactive oxygen species (ROS), has hardly been specially studied. The aim of this work was to study the possible protective effect of cadaverine on wheat (Triticum aestivum L.) seedlings under heat stress and its relationship with the formation and detoxification of ROS by antioxidant enzymes. Etiolated seedlings of soft winter wheat variety Doskonala were used in the work. We treated three-day-old seedlings with cadaverine at concentrations ranging from 0.05 to 2.5 mM by adding it to the root incubation medium. In some variants of the experiment, we treated seedlings with a hydrogen peroxide scavenger dimethylthiourea (DMTU - 150 μM), a diamine oxidase inhibitor aminogunidine (1 mM) or an inhibitor NADPH oxidase imidazole (10 μM), as well as the indicated inhibitors in combination with cadaverine. The hydrogen peroxide content and the activity of antioxidant enzymes were determined in the roots of seedlings a certain time after treatment with the studied compounds. One day after the treatment of seedlings with cadaverine, ROS antagonists, and a combination of effectors, the seedlings were subjected to damaging heating in a water thermostat (10 min at 45 °C). 24 h after heating, we assessed the content of the products of lipid peroxidation (LPO) in the roots and, after 3 days, the survival of seedlings. Incubation in the presence of cadaverine increased the resistance of seedlings to damaging heat (See Fig. 1). The highest relative number of surviving seedlings was observed in the variant with 1 mM cadaverine treatment. Under the effect of cadaverine, the content of hydrogen peroxide in the roots increased (See Fig. 2). We observed a noticeable effect 1-4 h after the start of treatment, with a maximum after 2 h. Treatment of seedlings with a scavenger of hydrogen peroxide DMTU removed the manifestation of the effect of an increase in the content of H2 O2 in the roots caused by the action of cadaverine (See Fig. 3). This effect was also completely eliminated by the diamine oxidase inhibitor aminoguanidine and was almost unchanged in the presence of the NADPH oxidase inhibitor imidazole. The effect of heat stress on seedlings caused an increase in the content of the LPO products in them. Treatment with cadaverine markedly reduced this manifestation of oxidative stress. The antioxidant DMTU and the diamine oxidase inhibitor aminoguanidine largely neutralized the protective effect of cadaverine (See Fig. 4a). At the same time, the NADPH oxidase inhibitor imidazole had almost no effect on the manifestation of the effect of cadaverine on the LPO products content in roots. Under the influence of DMTU and aminoguanidine, but not imidazole, the positive effect of cadaverine on the survival of seedlings after damaging heating was also leveled out (See Fig. 4b). The treatment of seedlings with cadaverine caused a change in the activity of antioxidant enzymes in the roots (superoxide dismutase - SOD, catalase, and guaiacol peroxidase) (See Fig. 5). DMTU and aminoguanidine neutralized the effect of cadaverine-induced increase in the activity of catalase and guaiacol peroxidase, but had almost no effect on the increase in SOD activity in roots induced by this diamine (See Fig. 6). The NADPH oxidase inhibitor imidazole did not significantly affect the manifestation of the effect of increasing the activity of antioxidant enzymes when seedlings are treated with cadaverine. We can conclude that one of the signaling mediators involved in the regulation activity of catalase and guaiacol peroxidase and in the induction of heat resistance of wheat seedlings by exogenous cadaverine is hydrogen peroxide, which is formed during the oxidation of cadaverine by diamine oxidase. At the same time, the modification of SOD activity in the roots of wheat seedlings with cadaverine, apparently, can occur without the participation of ROS.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 176
Author(s):  
Tatjana G. Shibaeva ◽  
Elena G. Sherudilo ◽  
Alexandra A. Rubaeva ◽  
Alexander F. Titov

The effect of continuous lighting (CL, 24 h) and light spectrum on growth and nutritional quality of arugula (Eruca sativa), broccoli (Brassica oleracea var. italic), mizuna (Brassica rapa. var. nipposinica), and radish (Raphanus sativus var. radicula) were investigated in growth chambers under light-emitting diode (LED) and fluorescent lighting. Microgreens were grown under four combinations of two photoperiods (16 h and 24 h) providing daily light integral (DLI) of 15.6 and 23.3 mol m−2 day−1, correspondingly) with two light spectra: LED lamps and fluorescent lamps (FLU). The results show that fresh and dry weights as well as leaf mass per area and robust index of harvested arugula, broccoli, mizuna, and radish seedlings were significantly higher under CL compared to 16 h photoperiod regardless of light quality. There were no visible signs of leaf photodamage. In all CL-treated plants higher chlorophyll a/b and carotenoid-to-chlorophyll ratios were observed in all plants except mizuna. CL treatment was beneficial for anthocyanin, flavonoid, and proline accumulation. Higher activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase) were also observed in CL-treated plants. In most cases, the effects were more pronounced under LED lighting. These results indicate that plants under mild oxidative stress induced by CL accumulated more non-enzymatic antioxidants and increased the activities of antioxidant enzymes. This added nutritional value to microgreens that are used as functional foods providing health benefits. We suggest that for arugula, broccoli, mizuna, and radish, an LED CL production strategy is possible and can have economic and nutritional benefits.


2014 ◽  
Vol 22 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Omid Younesi ◽  
Ali Moradi

AbstractThe experiment was conducted in order to study effects of seeds priming with gibberellic acid (GA3) at 0, 3, 5 and 8 mM on germination, growth and antioxidant enzymes activity in alfalfa seedlings under salinity stress (200 mM NaCl). All control seeds germinated. The rate of germinated seeds was reduced to 48% in the presence of NaCl, and increased to 76% after seeds priming with 5 mM GA3. Priming with 5 mM GA3 was also correlated with an increase of dry weight of seedlings derived from both stressed and non-stressed seeds as well as with the reduction of electrolyte leakage (EL) and malondialdehyde (MDA) level in salt stressed seedlings. The activity of superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase in primed and non-primed seeds increased in the presence of NaCl and after priming of seeds with 5 mM GA3, whereas only small effect on glutathione reductase activity in both primed and non-primed seeds was observed. The total ascorbate level was higher in both stressed and non-stressed seedlings from primed seeds. These results suggest that GA3 priming might increase the salt tolerance of alfalfa seedlings through enhancing the activities of antioxidant enzymes and reducing the membrane damage as estimated using biomarkers, EL index and MDA content.


2020 ◽  
Author(s):  
Wanyong Huang ◽  
Menghua Xiao ◽  
Shizong Zhen ◽  
Cheng Lu

Sign in / Sign up

Export Citation Format

Share Document