scholarly journals Soil properties and agronomic attributes of potato grown under deep tillage in succession of grass species

2017 ◽  
Vol 35 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Cristiano FA Costa ◽  
Paulo CT Melo ◽  
Henrique P Guerra ◽  
Carlos F Ragassi

ABSTRACT Yield and disease incidence were evaluated in potato (Solanum tuberosum, cv. Atlantic) after six years of cultivation in succession with corn (Zea mays, cv. ‘AG 6080’) under conventional tillage (CT, depth of tillage: 20 cm) or in succession with three grass species [Guinea grass (Panicum maximum, cv. Tanzânia), Palisade grass (Brachiaria brizantha, cv. Marandu) and corn] under deep tillage (DT, depth of tillage: 70 cm). Total tuber yield was higher in DT in average 36% the value obtained in CT (17.76 t/ha), with no effect of the grass species. Common scab (Streptomyces scabies) incidence was influenced by treatments, the highest (16.9%) and the lowest (9.5%) values being obtained in succession with corn and Guinea grass, respectively, both under DT. The lowest incidence of tuber greening at field (2.58%) was also recorded in Guinea DT, significantly lower than obtained in Corn CT (6.33%), possibly due to a more efficient ridging operation. Grass species showed different values of aboveground dry biomass production. Guinea grass (26.56 t/ha) was the most and Corn under CT and DT (5.72 and 5.56 t/ha, respectively, without ears) were the least productive ones. Soil density, macroporosity and resistance to penetration indices were significantly better with DT, the grass species affecting them in a minor degree. The deep tillage system is, therefore, recommended for potato cultivation regardless the grass species used for crop succession.

2020 ◽  
Vol 87 ◽  
Author(s):  
Djavan Pinheiro Santos ◽  
Robélio Leandro Marchão ◽  
Ronny Sobreira Barbosa ◽  
Juvenal Pereira da Silva Junior ◽  
Everaldo Moreira da Silva ◽  
...  

ABSTRACT: The soil macrofauna is fundamental for the maintenance of soil quality. The aim of this study was to characterize the soil macrofauna under different species of cover crops, including monoculture or intercropping associated to two types of soil management in the southwest region of Piauí state. The study was carried out in an Oxisol (Latossolo Amarelo, according to Brazilian Soil Classification System) in the municipality of Bom Jesus, Piauí, distributed in 30 m2 plots. Testing and evaluation of the soil macrofauna were conducted in a 9 × 2 strip factorial design, with combinations between cover crops/consortia and soil management (with or without tillage), with four replications. Soil monoliths (0.25 × 0.25 m) were randomly sampled in each plot for macrofauna at 0‒0.1, 0.1‒0.2, and 0.2‒0.3 m depth, including surface litter. After identification and counting of soil organims, the relative density of each taxon in each depth was determined. The total abundance of soil macrofauna quantified under cover crops in the conventional and no-tillage system was 2,408 ind. m-2, distributed in 6 classes, 16 orders, and 31 families. The results of multivariate analysis show that grass species in sole cropping systems and no-tillage presents higher macrofauna density, in particular the taxonomic group Isoptera. No-tillage also provided higher richness of families, where Coleoptera adult were the second more abundant group in no-tillage and Hemiptera in conventional tillage.


2017 ◽  
Vol 31 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Jaime A. Farmer ◽  
Kevin W. Bradley ◽  
Bryan G. Young ◽  
Lawrence E. Steckel ◽  
William G. Johnson ◽  
...  

A field study was conducted in 2014 and 2015 in Arkansas, Illinois, Indiana, Ohio, Tennessee, Wisconsin, and Missouri to determine the effects of tillage system and herbicide program on season-long emergence ofAmaranthusspecies in glufosinate-resistant soybean. The tillage systems evaluated were deep tillage (fall moldboard plow followed by (fb) one pass with a field cultivator in the spring), conventional tillage (fall chisel plow fb one pass with a field cultivator in the spring), minimum tillage (one pass of a vertical tillage tool in the spring), and no-tillage (PRE application of paraquat). Each tillage system also received one of two herbicide programs; PRE application of flumioxazin (0.09 kg ai ha–1) fb a POST application of glufosinate (0.59 kg ai ha−1) plusS-metolachlor (1.39 kg ai ha–1), or POST-only applications of glufosinate (0.59 kg ha−1). The deep tillage system resulted in a 62, 67, and 73% reduction inAmaranthusemergence when compared to the conventional, minimum, and no-tillage systems, respectively. The residual herbicide program also resulted in an 87% reduction inAmaranthusspecies emergence compared to the POST-only program. The deep tillage system, combined with the residual program, resulted in a 97% reduction inAmaranthusspecies emergence when compared to the minimum tillage system combined with the POST-only program, which had the highestAmaranthusemergence. Soil cores taken prior to planting and herbicide application revealed that only 28% of theAmaranthusseed in the deep tillage system was placed within the top 5-cm of the soil profile compared to 79, 81, and 77% in the conventional, minimum, and no-tillage systems. Overall, the use of deep tillage with a residual herbicide program provided the greatest reduction inAmaranthusspecies emergence, thus providing a useful tool in managing herbicide-resistantAmaranthusspecies where appropriate.


2012 ◽  
Vol 47 (2) ◽  
pp. 187-192 ◽  
Author(s):  
Adriano Stephan Nascente ◽  
Carlos Alexandre Costa Crusciol

The objective of this work was to evaluate the effect of cover crops and timing of pre-emergence herbicide applications on soybean yield under no-tillage system. The experiment consisted of four cover crops (Panicum maximum, Urochloa ruziziensis, U. brizantha, and pearl millet) and fallow, in addition to four herbicide timings (30, 20, 10, and 0 days before soybean sowing), under no-tillage system (NTS), and of two control treatments under conventional tillage system (CTS). The experimental design was a completely randomized block, in a split-plot arrangement, with three replicates. Soybean under fallow, P. maximum, U. ruziziensis, U. brizantha, and pearl millet in the NTS and soybean under U. brizantha in the CTS did not differ significantly regarding yield. Soybean under fallow in the CTS significantly reduced yield when compared to the other treatments. The amount of straw on soil surface did not significantly affect soybean yield. Chemical management of P. maximum and U. brizantha near the soybean sowing date causes significant damage in soybean yield. However, herbicide timing in fallow, U. ruziziensis, and pearl millet does not affect soybean yield.


2012 ◽  
Vol 47 (8) ◽  
pp. 1031-1037 ◽  
Author(s):  
Eliane Divina de Toledo‑Souza ◽  
Pedro Marques da Silveira ◽  
Adalberto Corrêa Café‑Filho ◽  
Murillo Lobo Junior

The objective of this work was to evaluate the effects of preceding crops and tillage systems on the incidence of Fusarium wilt (Fusarium oxysporum f. sp. phaseoli) and common bean (Phaseolus vulgaris) yield. The cultivar BRS Valente was cultivated under center‑pivot irrigation in the winter seasons of 2003, 2004 and 2005, after several preceding crops established in the summer seasons. Preceding crops included the legumes Cajanus cajan (pigeon pea), Stylosanthes guianensis, and Crotalaria spectabilis; the grasses Pennisetum glaucum (millet), Sorghum bicolor (forage sorghum), Panicum maximum, and Urochloa brizantha; and a consortium of maize (Zea mays) and U. brizantha (Santa Fé system). Experiments followed a strip‑plot design, with four replicates. Fusarium wilt incidence was higher in the no‑tillage system. Higher disease incidences corresponded to lower bean yields in 2003 and 2004. Previous summer cropping with U. brizantha, U. brizantha + maize consortium, and millet showed the lowest disease incidence. Therefore, the choice of preceding crops must be taken into account for managing Fusarium wilt on irrigated common bean crops in the Brazilian Cerrado.


2013 ◽  
Vol 31 (1) ◽  
pp. 147-155 ◽  
Author(s):  
A.S Nascente ◽  
C.A.C Crusciol ◽  
L.F Stone ◽  
T Cobucci

The appropriate chemical management of cover crops in no-tillage aims to obtain greater benefits with its employment in agricultural systems. The objective of this study was to assess upland rice yield as affected by the previous summer crop, species and desiccation timing of cover crops by glyphosate. Sown cover crops were sown (November 2007), followed by rice in half of the experimental area and soybean in the other half (November 2008). After the harvesting of these crops, the same cover crops were sown again (March 2009) and followed by upland rice in the total area (November 2009). The experiment consisted of the combination of five cover crops (fallow, Panicum maximum, Brachiaria ruziziensis, B. brizantha and Pennisetum glaucum), four desiccation timings (30, 20, 10 and 0 days before rice sowing), and two antecedents of the summer crop (rice or soybean) under no-tillage system (NTS), plus two control treatments at conventional tillage system (CTS). Cover crops significantly affect rice grain yield and its components. There is a significant tendency to highest yield when cover crop desiccation is conducted farther from the rice sowing date (from 2,577.1 kg ha-1 - desiccation at rice sowing to 3,115.30 kg ha-1 - desiccation 30 days before rice sowing). Soybean as an antecedent of summer crop allows better upland rice yield (3,754 kg ha-1) than rice as an antecedent of summer crop (2,635 kg ha-1); fallow/soybean/fallow (4,507 kg ha-1) and millet/soybean/millet (4,765 kg ha-1) rotation at no-tillage system, and incorporated fallow /soybean/ incorporated fallow (4,427 kg ha-1) at conventional tillage system allow the highest rice yield; upland rice yield is similar at no-till (3,194 kg ha-1) and till system (2,878 kg ha-1).


2021 ◽  
Vol 15 ◽  
pp. 71-75
Author(s):  
T. A. ADEGBOLA ◽  
I. MECHA

The chemical composition of the leaves of three trees, Acioa baneri, Anacardium occidentale (Cashew) and Mangifera indica (Mango) and an herb, Aspillia africana (Hemorrhage plant), their dry matter intake (DMI, g/day) and digestibilities (%) of dry matter (DM), organic matter (0M), crude protein (CP) a crude fibre (CF) were determined in West African dwarf goats. The chemical composition of three grass species, Andropogon gayanus (Guinea grass), Cynodon nlemfuensis (Giant star grass) and Panicum maximum (Guinea grass was also determined to compare with those of the browses. The browses had higher CP (8.1-31.3%), acid detergent lignin (6.9-15.1%), Calcium (0.5-2.3%) and lower CF (9.6-23.5%) than the grasses which had 3.2-4.9% CP, 4.3-8.1% lignin, 0.43- 0.53% Ca and 24.4-28.1% CF. The consumption of fresh forages (g/d) varied from 193 on Acioa baneri to 918 on Aspilia africana. The highest DM intake was obtained on Aspilia africana, Apparent digestibility values (%) were: DM, 59.9&69.7; OM, 61.0-71.1; CP. 40.9-68.2 and CF, 39.3-64.9. Acioa batereri was the least digested of the forages. The higher CP content of the browses and their availability and acceptability by goals during the dry season in contrast 10 the low CP of the grasses indicates their potential for feeding goats. Acioa barteri is unsuitable as sole food for goats


1969 ◽  
Vol 22 (02) ◽  
pp. 304-315 ◽  
Author(s):  
E. W Salzman ◽  
T. P Ashford ◽  
D. A Chambers ◽  
Lena L. Neri

SummaryAfter incubation of platelet-rich plasma with labelled adenosine or ADP, platelet incorporation of radioactivity was assessed. Platelets were rapidly separated for counting by filtration through cellulose acetate Millipore. Inulin-H3 served as a plasma marker, and triple isotope techniques permitted simultaneous assessment of the behavior of the adenine and phosphate moieties of ADP without washing of platelets. In other experiments, electron microscopic radioautography was employed to trace the label after platelet incorporation.The results were consistent with previous reports that ADP is dephosphorylated in plasma and is incorporated by platelets only as a dephosphorylated residue, probably adenosine. The label crossed the platelet membrane and entered the platelet, where it was distributed in platelet granules and the agranular cell sap. Concentration within granules occurred to a minor degree.The results support the hypothesis that platelet aggregation by ADP occurs without a persistent bond of ADP to the platelet. Inhibition of aggregation by adenosine probably depends on a metabolic or transport process rather than on competition between adenosine and ADP for platelet binding sites.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 200
Author(s):  
Felicia Chețan ◽  
Cornel Chețan ◽  
Ileana Bogdan ◽  
Adrian Ioan Pop ◽  
Paula Ioana Moraru ◽  
...  

The regional agroecological conditions, specific to the Transylvanian Plain, are favorable to soybean crops, but microclimate changes related to global warming have imposed the need for agrotechnical adaptive measures in order to maintain the level of soybean yield. In this study, we consider the effect of two soil tillage systems, the seeding rate, as well as the fertilizer dosage and time of application on the yield and quality of soybean crops. A multifactorial experiment was carried out through the A × B × C × D − R: 3 × 2 × 3 × 3 − 2 formula, where A represents the year (a1, 2017; a2, 2018; and a3, 2019); B represents the soil tillage system (b1, conventional tillage with mouldboard plough; b2, reduced tillage with chisel cultivator); C represents the fertilizer variants (c1, unfertilized; c2, one single rate of fertilization: 40 kg ha−1 of nitrogen + 40 kg ha−1 of phosphorus; and c3, two rates of fertilization: 40 kg ha−1 of nitrogen + 40 kg ha−1 of phosphorus (at sowing) + 46 kg ha−1 of nitrogen at V3 stage); D represents the seeding rate (1 = 45 germinating grains (gg) m−2; d2 = 55 gg m−2; and d3 = 65 gg m−2); and R represents the replicates (r1 = the first and r2 = the second). Tillage had no effect, the climate specific of the years and fertilization affected the yield and the quality parameters. Regarding the soybean yield, it reacted favorably to a higher seeding rate (55–65 gg m−2) and two rates of fertilization. The qualitative characteristics of soybeans are affected by the fertilization rates applied to the crop, which influence the protein and fiber content in the soybean grains. Higher values of protein content were recorded with a reduced tillage system, i.e., 38.90 g kg−1 DM in the variant with one single rate of fertilization at a seeding rate of 45 gg per m−2 and 38.72 g kg−1 DM in the variant with two fertilizations at a seeding rate of 65 gg m−2.


Sign in / Sign up

Export Citation Format

Share Document