scholarly journals Shear bond strength of enamel surface treated with air-abrasive system

2002 ◽  
Vol 13 (3) ◽  
pp. 175-178 ◽  
Author(s):  
Maria Cristina Borsatto ◽  
Alma Blásida Elisaur Benitez Catirse ◽  
Regina Guenka Palma Dibb ◽  
Telma Nunes do Nascimento ◽  
Renata Andréa Salvitti de Sá Rocha ◽  
...  

The aim of this study was to evaluate the shear bond strength of a composite resin to dental enamel, using three different surface treatments. Fifteen sound third molars were randomly assigned to three groups. The mesial and distal surfaces were flattened and covered using adhesive tape with a central orifice delimiting the adhesion area (7.07 mm²). Group I, the enamel surface was conditioned with 37% phosphoric acid for 15 s; group II, the surface was treated using air abrasion with aluminum oxide; group III, the enamel surface was treated using an association of air abrasion with aluminum oxide and 37% phosphoric acid. The Single Bond (3M) adhesive system was applied and a Teflon matrix was placed and filled with composite resin Z-100 (3M) and light-cured. The shear bond strength test was performed with a universal testing machine. The acid etching technique and air abrasion with aluminum oxide associated with acid etching had the highest shear bond strength values. Data were subjected to statistical analysis using ANOVA and the Tukey test, and no statistically significant difference in shear bond strength was observed between group I (12.49 ± 2.85 MPa) and group III (12.59 ± 2.68 MPa). In contrast, both groups had statistically better shear bond strengths compared to group II (0.29 ± 0.56 MPa; p<0.05). Air abrasion with aluminum oxide does not substitute acid etching. The association of these methods to obtain adequate adhesion to the substrate is necessary.

Author(s):  
Ganapathi Vasavi Prasanna ◽  
Vemareddy Rajasekhar ◽  
Someshwar Battu ◽  
Korrai Balaraju ◽  
Seera Sudhakar Naidu ◽  
...  

Aims and Objectives: The main aim of this study is to compare and evaluate the shear bond strength of composite resin using a total etch adhesive and self-etch adhesive after treatment with different collagen cross-linking agents. Materials and Methods: Forty freshly extracted human maxillary central incisors were taken. The proximal dentin was exposed, cavities were prepared on mesial and distal of each tooth. The specimens were randomly divided into two groups based on bonding agent applied-Group A and Group B i.e universal bonding agent and all in one bonding agent respectively and are subdivided into four groups based on the surface treatment of dentin. Group I A (n=10) Control-total etch(CTE); Group II A (n=10) Sodium Ascorbate-total etch (STE); Group III A (n=10)- Proanthocyanidin total etch(PTE); Group IV A (n=10)- Chitosan total etch (CHTE); Group I B (n=10) Control-self etch (CSE); Group II B (n=10) Sodium Ascorbate-self etch(SSE); Group III B (n=10)- Proanthocyanidin self-etch (PSE); and Group IV B (n=10) - Chitosan self-etch (CHSE). Shear bond strength of the specimens are tested with universal testing machine, and the data was statistically analysed with one way ANOVA. Results: Significantly higher shear bond strength to dentin was observed in teeth treated with 6.5% Proanthocyanidin Total etch, 10% Sodium Ascorbate Total etch and 1% Chitosan acetate compared to the control group. No significant difference was seen with self-etch treated groups. Conclusion: Dentin surface pretreatment with 6.5% Proanthocyanidin, 10% Sodium Ascorbate and 1% Chitosan acetate results in significant enhancement in bond strength of composite resin to deep dentin.


2021 ◽  
Vol 10 (40) ◽  
pp. 33-37
Author(s):  
Joyce de Figueiredo Meira Barbosa ◽  
Lara Pepita de Souza Oliveira ◽  
Marcelo Nascimento Bruce ◽  
Jonas Alves Oliveira ◽  
Ligia Regina Mota Vasconcelos ◽  
...  

Acrylic denture teeth may suffer fracture or wear requiring the need for repair. This study aimed to evaluate the shear bond strength between acrylic resin artificial teeth restored with composite resin (with two different surface treatments) and acrylic resin (AR), simulating repair with these materials. Thirty artificial incisors were included by the palatal side in a circular microwave-polymerized AR base and polished on their buccal side with 120 and 320 grit sandpaper in a metallographic polisher and, then, divided into three groups: (I) restoration with self-cured AR; (II) conventional restoration with Z-100 composite resin with application of acid etching and Single Bond-3M adhesive; and (III) restoration with Z-100 composite resin with submersion for 30 seconds in acetone and application of Single Bond-3M adhesive. Shear bond strength tests were performed in a Universal Testing Machine (Instron). The results were submitted to ANOVA and Tukey (p<0.05) tests, in which Group I (33.26MPa ±10.76) and Group III (22.24MPa ±13.13) showed no statistically significant difference, but both were superior to Group II (10.31MPa ±5.62), which showed a lower value of shear bond strength. It can be concluded that composite resin restoration with acetone pretreatment can be a viable alternative for repair.


2001 ◽  
Vol 25 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Azza El-Housseiny ◽  
Hana Jamjoum

This study was undertaken to evaluate the effect of caries detector dyes and/or cavity cleanser on composite bonding and etching patterns of enamel and dentin. One hundred and eight non-carious premolars were divided into six groups according to the enamel and dentin pretreatment investigated. The different pretreatment were as follows: Group I: teeth with prophylaxis only, Group II: Sable seek caries detector dye,Groups III: chlorhexidine cavity cleanser,Group IV: the caries detectors dye followed by prophylaxis, Group V: the cavity cleanser followed by the caries detector dye, and Group IV: Snoop caries detector dye. The shear bond strength of composite resin bonded to enamel and dentin was evaluated by the Instron Universal testing machine while, the topographic details of enamel and dentin were examined by the SEM following the different pretreatment and acid etching. Results of the shear bond strength showed no statistically significant difference among the six groups, with no substantial differences in SEM results. It is concluded that using the caries detector dyes and/or chlorhexidine cavity cleanser before acid etching does not significantly affect composite bonding to enamel and dentin.


2008 ◽  
Vol 78 (1) ◽  
pp. 125-128 ◽  
Author(s):  
Samir E. Bishara ◽  
Manal Soliman ◽  
John F. Laffoon ◽  
John Warren

Abstract Objective: To determine the shear bond strength of a new resin glass ionomer adhesive with higher fluoride release properties when bonding orthodontic brackets. Materials and Methods: Sixty freshly extracted human molars were collected and stored in a solution of 0.1% (weight/volume) thymol. The teeth were cleaned and polished. The teeth were randomly separated into three groups according to the enamel conditioner/etchant and adhesive used. Group I: 20 teeth conditioned with 10% polyacrylic acid and brackets bonded with the new glass ionomer adhesive. Group II: 20 teeth conditioned with 37% phosphoric acid and brackets bonded with the new glass ionomer adhesive. Group III (control): 20 teeth etched with 37% phosphoric acid and brackets bonded with a composite adhesive. Results: The results of the analysis of variance comparing the three experimental groups (F = 10.294) indicated the presence of significant differences between the three groups (P = .0001). The shear bond strengths were significantly lower in the two groups bonded with the new glass ionomer adhesive whether conditioned with polyacrylic acid (x̄ = 3.2 ± 1.8 MPa) or phosphoric acid (x̄ = 2.3 ± 1.1 MPa), while the mean shear bond strength of the composite adhesive was 5.2 ± 2.9 MPa. Conclusions: Although the increased fluoride release from the new glass ionomer has the potential of decreasing decalcification around orthodontic brackets, the shear bond strength of the material is relatively low.


2015 ◽  
Vol 40 (3) ◽  
pp. E112-E121 ◽  
Author(s):  
HA St Germain ◽  
TH St Germain

SUMMARY In this laboratory research, shear bond strength (SBS) and mode of failure of veneers rebonded to enamel in shear compression were determined. Three groups (A, B, and C; n=10 each) of mounted molar teeth were finished flat using wet 600-grit silicon carbide paper, and 30 leucite-reinforced porcelain veneers (5.0 × 0.75 mm) were air abraded on the internal surface with 50 μm aluminum oxide, etched with 9.5% hydrofluoric acid, and silanated. The control group (A) veneer specimens were bonded to enamel after etching with 37% phosphoric acid using bonding resin and a dual cure resin composite cement. Groups B and C were prepared similarly to group A with the exception that a release agent was placed before the veneer was positioned on the prepared enamel surface and the resin cement was subsequently light activated. The debonded veneers from groups B and C were placed in a casting burnout oven and heated to 454°C/850°F for 10 minutes to completely carbonize the resin cement and stay below the glass transition temperature (Tg) of the leucite-reinforced porcelain. The recovered veneers were then prepared for bonding. The previously bonded enamel surfaces in group B were air abraded using 50 μm aluminum oxide followed by 37% phosphoric acid etching, while group C enamel specimens were acid etched only. All specimens were thermocycled between 5°C and 55°C for 2000 cycles using a 30-second dwell time and stored in 37°C deionized water for 2 weeks. SBS was determined at a crosshead speed of 1.0 mm/min. SBS results in MPa for the groups were (A) = 20.6±5.1, (B) = 18.1±5.5, and (C) = 17.2±6.1. One-way analysis of variance indicated that there were no significant interactions (α=0.05), and Tukey-Kramer post hoc comparisons (α=0.05) detected no significant pairwise differences. An adhesive mode of failure at the enamel interface was observed to occur more often in the experimental groups (B = 40%, C = 50%). Rebonding the veneers produced SBS values that were not significantly different from the control group. Also, no significant difference in SBS values were observed whether the debonded enamel surface was air abraded and acid etched or acid etched only.


2017 ◽  
Vol 18 (3) ◽  
pp. 182-187
Author(s):  
Ayah A Al-Asmar ◽  
Khaled S Hatamleh ◽  
Muhanad Hatamleh ◽  
Mohammad Al-Rabab'ah

ABSTRACT Introduction The aim of this study is to evaluate the effect of different combinations of various surface treatments on the shear bond strength (SBS) of repaired composite resin. Materials and methods A total of 122 composite samples were prepared from Filtek Z350 XT. Samples were light cured and stored for 6 weeks. Surface treatment of old composite was done in five groups: Group I: bur roughening + phosphoric acid etching, group II: bur roughening + hydrofluoric acid etching + silane coupling agent, group II: air abrasion + phosphoric acid etching, group IV: air abrasion + phosphoric acid etching + silane coupling agent, group V: air abrasion + hydrofluoric acid etching + silane coupling agent. Bonding agent was applied to all surface-treated old composites and light cured. The fresh composite resin was bonded to treated surfaces and cured and stored in water at 37°C for 6 weeks. Shear bond strength was measured by a universal testing machine. Results Shear bond strength values of all groups were not statistically significant except for group V, which showed statistically significant higher SBS than group III. Conclusion Techniques with readily available materials at the clinic can attain similar SBS to more elaborate technique involving potentially hazardous materials. How to cite this article Al-Asmar AA, Hatamleh KS, Hatamleh M, Al-Rabab'ah M. Evaluating Various Preparation Protocols on the Shear Bond Strength of Repaired Composite. J Contemp Dent Pract 2017;18(3):182-187.


2006 ◽  
Vol 17 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Stenyo Wanderley Tavares ◽  
Simonides Consani ◽  
Darcy Flávio Nouer ◽  
Maria Beatriz Borges de Araújo Magnani ◽  
Paulo Roberto Aranha Nouer ◽  
...  

The purpose of this study was to evaluate in vitro the shear bond strength of recycled orthodontic brackets. S2C-03Z brackets (Dental Morelli, Brazil) were bonded to the buccal surfaces of 50 extracted human premolars using Concise Orthodontic chemically cured composite resin (3M, USA). The teeth were randomly assigned to 5 groups (n=10), as follows. In group I (control), the bonded brackets remained attached until shear testing (i.e., no debonding/rebonding). In groups II, III and IV, the bonded brackets were detached and rebonded after recycling by 90-mum particle aluminum oxide blasting, silicon carbide stone grinding or an industrial process at a specialized contractor company (Abzil-Lancer, Brazil), respectively. In group V, the bonded brackets were removed and new brackets were bonded to the enamel surface. Shear bond strength was tested in an Instron machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. There was no statistically significant difference (p>0.05) between the control brackets (0.52 kgf/mm²), brackets recycled by aluminum oxide blasting (0.34 kgf/mm²) and new brackets attached to previously bonded teeth (0.43 kgf/mm²). Brackets recycled by the specialized company (0.28 kgf/mm²) and those recycled by silicon carbide stone grinding (0.14 kgf/mm²) showed the lowest shear strength means and differed statistically from control brackets (0.52 kgf/mm²) (p<0.05). In conclusion, the outcomes of this study showed that bracket recycling using 90-µm aluminum oxide particle air-abrasion was efficient and technically simple, and might provide cost reduction for orthodontists and patients alike.


2017 ◽  
Vol 2 (1) ◽  
pp. 35
Author(s):  
Ema Mulyawati

The Effect of desensitizing agent in post-extracoronal bleaching on shear bond strength of composite resin. The dentinal hypersensitivity is a common condition among patients after extracoronal bleaching treatment that usually needs the application of desensitizing agent. The purpose of this study was to evaluate the composite resin restoration shear bond strength with and without desensitizing application after extracoronal bleaching using 40% of H2O2. Twenty one extracted permanent human incisor teeth were randomly divided into 3 groups of 7 each. Group I was with the application of 40% H2O2 without any desensitizing agent. Group II was with the application of 40% of H2O2 with desensitizing agent and group III served as the control. The teeth were immersed in artificial saliva and stored in 37 °C incubator for 7 days. The teeth were restored using composite resin. After restoring the shear bond strength of composite resin was tested using a universal testing machine. Result and conclusion. there is no significant difference between bleaching group with and without desensitizing agent. The application of desensitizing agent after extracoronal bleaching did not impact the composite resin shear bond strength.ABSTRAKDentin hipersensitif merupakan kondisi yang biasa dialami pasien setelah perawatan bleaching ekstrakoronal yang biasanya memerlukan aplikasi bahan desensitasi. Penelitian ini bertujuan untuk mengetahui pengaruh bahan desensitasi pasca bleaching ekstrakoronal menggunakan H2O2 40% terhadap kekutan geser pelekatan restorasi resin komposit. Dua puluh satu gigi permanen insisivus yang telah dicabut dibagi dalam tiga kelompok masing-masing 7 gigi. Kelompok I dilakukan bleaching ekstrakoronal dengan H2O2 tanpa bahan desensitasi. Kelompok II dilakukan bleaching setelah itu diaplikasikan bahan desensitasi dan kelompok III sebagai kelompok kontrol. Semua gigi-gigi tersebut di rendam dalam saliva buatan dan dimasukkan inkubator selama 7 hari pada suhu 37 °C. Selanjutnya seluruh gigi dilakukan restorasi resin komposit menggunakan light cure halogen. Setelah itu dilakukan pengujian kekuatan geser pelekatan menggunakan universal testing machine. Data dianalisis menggunakan uji Kruskal - Wallis. Hasil penelitian menunjukkan bahwa tidak ada perbedaan kekuatan geser pelekatan pada semua kelompok perlakuan (p > 0,05). Dari penelitian ini disimpulkan bahwa tidak terdapat pengaruh aplikasi bahan desensitasi pasca bleaching ekstrakoronal terhadap kekuatan geser pelekatan restorasi resin komposit.


2018 ◽  
Vol 30 (1) ◽  
pp. 45
Author(s):  
Dedeh Pitriani ◽  
Setiadi W Logamarta ◽  
Dian N. Agus Imam

Introduction: Sapphire bracket is the best aesthetic bracket with metal bracket-like mechanical properties. In conditions causing attachment lost between sapphire bracket and enamel, a rebonding procedure will needed. The shear bond strength of sapphire bracket decrease after the rebonding procedure. Sandblasting, hydrofluoric acid etching, and silanization as surface treatment are widely used to improve the bracket bond strength. The purpose of this study was to evaluate the effect of zirconia as sandblasting material towards the shear bond strength of reconditioned sapphire bracket. Methods: This study was an experimental laboratory with as much as 27 samples of sapphire bracket divided into 3 groups. Group I was rebonded with sandblasting zirconia and silane, group II with hydrofluoric acid etching and silane, and group III with new bracket bonding. The attachment strength measurement indicator was the shear bond strength test and the SEM analysis. Results: The shear bond strength test showed the average value for each group were 12.97 MPa, 9.26 MPa, and 10.58 MPa, consecutively. The test results were then analysed using a one way ANOVA and LSD (p < 0.05), which showed that significant difference only found in the comparison between group I with group II, but not in the comparison between group I with group III. The SEM analysis result showed that sandblasted surface has homogenous microporosities in high quantities. Conclusion: Zirconia as sandblasting material was effective in increasing the shear bond strength of reconditioned sapphire bracket.


Sign in / Sign up

Export Citation Format

Share Document