scholarly journals Biofloc production in activated sludge system treating shrimp farming effluent

2018 ◽  
Vol 23 (6) ◽  
pp. 1143-1152 ◽  
Author(s):  
Sandra Tedde Santaella ◽  
Maria do Socorro Vale ◽  
Clara Cabral Almeida ◽  
Willame de Araújo Cavalcante ◽  
Alberto Jorge Pinto Nunes ◽  
...  

ABSTRACT The release of wastewater and the shrimp feed cost are the main challenges faced by the shrimp farming industry. An alternative solution to both problems is biofloc production in a unit external to the farm, in an activated sludge system for effluent treatment. The treatment system’s influent was composed of the shrimp farm wastewater supplemented with urea and sugarcane molasses. The results show that the average removal of chemical oxygen demand was 71% and the average biofloc production in the reactor was approximately 1.5g.L-1. Adding molasses to the influent contributed to the increase in the quantity and diversity of existing microorganisms that are beneficial to cultured shrimp. The mass balance of nitrogen compounds confirmed that nitrification occurred in the system. Therefore, the use of the activated sludge system is a viable and environmentally suitable alternative to produce bioflocs and shrimp farming effluent treatment.

2020 ◽  
Vol 273 ◽  
pp. 122482 ◽  
Author(s):  
Viktória Pitás ◽  
Viola Somogyi ◽  
Árpád Kárpáti ◽  
Péter Thury ◽  
Tamás Fráter

2015 ◽  
Vol 19 (2) ◽  
pp. 7
Author(s):  
Andrés Felipe Torres Franco ◽  
Nancy Vásquez Sarria ◽  
Jenny Rodriguez Victoria

A pilot-scale study was conducted to evaluate a traditional contact stabilization activated sludge system (CSASC) and a modified CSAS (CSASM) treating domestic wastewater. The CSASC system was comprised of a contact reactor (CR), a stabilization reactor (SR) and a secondary settler (SS); the CSASM included a second CR, a second SS (CR2 and SS2), and a modified SR (SRM) divided into four zones: an attached-suspended growth zone which allowed the system to reach an average sludge retention time close to 36 d and favored the occurrence of nitrification; an anoxic zone for denitrification occurrence; an aerated suspended growth zone with a high presence of organic carbon; and an additional aerated suspended growth zone with a high ammonia concentrations environment. The CSASC’s removal efficiencies of chemical oxygen demand (COD) and total ammonia nitrogen (TAN) were respectively 94±4 % and 53±12%; whereas CSASM’s efficiencies were 88±7% for COD and 92±7% for TAN. Concentrations of TAN and NO3 --N in the CSASC’s final effluent were 14.3±5.2 and 5.0±2.9 mg×L-1; and 4.8±4.4 and 9.1±5.8 mg×L-1 in the CSASM’s final effluent. Results demonstrated that the proposed configuration obtained higher nitrogen removal efficiencies than traditional CSAS.</p>


2016 ◽  
Vol 74 (5) ◽  
pp. 1227-1234 ◽  
Author(s):  
Dorota Gendaszewska ◽  
Ewa Liwarska-Bizukojc

The effects of 1-decyl-3-methylimidazolium bromide on activated sludge process and microbial composition were investigated. Ionic liquid (IL) was dosed continuously to the laboratory activated sludge system at an influent concentration from 1 to 20 mg l−1 for about 1 month. As compared to the control test, mean values of degree of chemical oxygen demand removal and degree of biochemical oxygen demand removal were almost remaining constant at a high level, equaling 92.6% and 98.1%, respectively. In addition, no influence of IL on size and shape of flocs was observed. The values of the sludge biotic index indicate that sludge exposed on IL was stable and very well colonized with good biological activity. Increases in Proteobacteria (mainly Variovorax sp., Vogesella sp., Hydrogenophaga sp.), Bacteroidetes (mainly Lewinella sp., Haliscomenobacter sp., Runella sp.) and Nitrospirae were detected in sludge adapted to IL compared to the control system. The results showed that activated sludge can adapt to IL present in wastewater.


2012 ◽  
Vol 66 (3) ◽  
pp. 517-524 ◽  
Author(s):  
Zhengfang Ye ◽  
Feng Wang ◽  
Haitao Bi ◽  
Zhongyou Wang ◽  
Guo-hua Liu

A simple anaerobic-activated sludge system, in which microorganisms are immobilized by a novel functional carrier, was used for removing nitrate in groundwater. The operating conditions, including hydraulic retention time (HRT), C/N ratio, temperature and NO3−-N loading concentration were investigated. The NO3−-N concentration, residual chemical oxygen demand (COD) and nitrite accumulation were used as indicators to assess the water quality of the effluent. The anaerobic biomass loading capacity in the carrier was 12.8 g/L and the denitrifying Pseudomonas sp. and Rhodocyclaceae bacterium were dominant among the immobilized microorganisms in the anaerobic-activated sludge. Under operating conditions of HRT= 1.5 h, C/N= 2–3 and T= 16.8–20 °C, the removal efficiency of NO3−-N exceeded 93%, corresponding to a relatively high denitrification rate of 0.73 kg NO3−-N m−3 d−1, when the NO3−-N loading concentration was 50 mg/L. The NO3−-N concentration of the effluent always met regulatory criteria for drinking water (&lt;10 mg/L) in the main developed and developing countries. The effluent COD was also below 10 mg/L. Although some nitrite accumulated (0–1.77 mg/L) during the operating period, it can be decreased through adjusting the operating pH and HRT. The immobilized activated sludge system may be useful for the removal of nitrate from groundwater.


1999 ◽  
Vol 35 (3-4) ◽  
pp. 255-265 ◽  
Author(s):  
Babu Ram ◽  
Pramod K Bajpai ◽  
Harjinder K Parwana

2015 ◽  
Vol 73 (2) ◽  
pp. 317-328 ◽  
Author(s):  
Olcayto Keskinkan ◽  
Behzat Balci

In this study, bisphenol-A (BPA) removal from synthetic wastewaters using a laboratory-scale activated sludge system was achieved. Activated (biotic) sludge was used for BPA elimination, whereas inactivated (abiotic) sludge was used during the adsorption study. In each step, six different BPA concentrations (5, 10, 20, 30, 40, and 50 mg L−1) were tested, and temperatures were set to 10, 20, and 30 °C in the shakers. Four different activated sludge concentrations (1,000, 2,000, 3,000, and 4,000 mgTSS L−1) were applied in the biotic study, and only 2,000 mgTSS L−1 was used in the abiotic study. After settlement of the sludge in the shakers, supernatants and control groups were filtered and analyzed for BPA using high performance liquid chromatography. In the biotic study, BPA and chemical oxygen demand (COD) concentrations were reduced at 100% and 99% levels, respectively. However, the BPA concentrations during the abiotic study changed slightly at varying temperatures, whereas there was no change of BPA concentration observed in the control groups. Results indicate that the main factor of BPA removal in an activated sludge system is biological. Kinetic studies were also conducted. BPA removal was best fit to zero- and first-order reaction kinetics, and the reaction rate constants are provided in this paper.


2015 ◽  
Vol 73 (4) ◽  
pp. 734-739 ◽  
Author(s):  
C. L. Martins ◽  
V. F. Velho ◽  
S. R. A. Ramos ◽  
A. S. C. D. Pires ◽  
E. C. N. F. A. Duarte ◽  
...  

The aim of this study was to investigate the ability of the oxic-settling-anaerobic (OSA)-process and the folic acid addition applied in the activated sludge process to reduce the excess sludge production. The study was monitored during two distinct periods: activated sludge system with OSA-process, and activated sludge system with folic acid addition. The observed sludge yields (Yobs) were 0.30 and 0.08 kgTSS kg–1 chemical oxygen demand (COD), control phase and OSA-process (period 1); 0.33 and 0.18 kgTSS kg–1 COD, control phase and folic acid addition (period 2). The Yobs decreased by 73 and 45% in phases with the OSA-process and folic acid addition, respectively, compared with the control phases. The sludge minimization alternatives result in a decrease in excess sludge production, without negatively affecting the performance of the effluent treatment.


1993 ◽  
Vol 20 (2) ◽  
pp. 171-179
Author(s):  
Mukesh Sharma ◽  
W. B. Hall ◽  
E. A. McBean

A design-point method, or advanced first-order second-moment technique, is used for reliability-based analyses of activated sludge processes in meeting specified effluent standards. Three non-normal random variables, namely flow, influent biochemical oxygen demand (BOD), and influent suspended solids (SS) concentrations, are utilized in evaluating the performance of the activated sludge system. Two types of failure to attain specified effluent standards are considered, namely BOD failure and SS failure. The reliability of activated sludge system is studied with respect to the volume of the aeration tank using design-point method. Key words: reliability analyses, BOD, activated sludge.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1553
Author(s):  
Pui Mun Chin ◽  
Aine Nazira Naim ◽  
Fatihah Suja ◽  
Muhammad Fadly Ahmad Usul

Rapid population growth has contributed to increased solid waste generated in Malaysia. Most landfills that have reached the design capacity are now facing closure. Taman Beringin Landfill was officially closed, so the Taman Beringin Solid Waste Transfer Station was built to manage the relocation, consolidation, and transportation of solid waste to Bukit Tagar Sanitary Landfill. Leachates are generated as a consequence of rainwater percolation through waste and biochemical processes in waste cells. Leachate treatment is needed, as leachates cause environmental pollution and harm human health. This study investigates the impact of treated leachate discharge from a Leachate Treatment Plant (LTP) on the Jinjang River water quality. The performance of the LTP in Taman Beringin Solid Waste Transfer Station was also assessed. Leachate samples were taken at the LTP’s anoxic tank, aeration tank, secondary clarifier tank, and final discharge point, whereas river water samples were taken upstream and downstream of Jinjang River. The untreated leachate returned the following readings: biochemical oxygen demand (BOD) (697.50 ± 127.94 mg/L), chemical oxygen demand (COD) (2419.75 ± 1155.22 mg/L), total suspended solid (TSS) (2710.00 ± 334.79 mg/L), and ammonia (317.08 ± 35.45 mg/L). The LTP’s overall performance was satisfactory, as the final treated leachates were able to meet the standard requirements of the Environmental Quality (Control of Pollution from Solid Waste Transfer Station and Landfill) Regulation 2009. However, the LTP’s activated sludge system performance was not satisfactory, and the parameters did not meet the standard limits. The result shows a low functioning biological treatment method that could not efficiently treat the leachate. However, a subsequent step of combining the biological and chemical process (coagulation, flocculation, activated sludge system, and activated carbon adsorption) helped the treated leachate to meet the standard B requirement stipulated by the Department of Environment (DOE), i.e., to flow safely into the river. This study categorized Jinjang River as polluted, with the discharge of the LTP’s treated leachates, possibly contributing to the river pollution. However, other factors, such as the upstream sewage treatment plant and the ex-landfill downstream, may have also affected the river water quality. The LTP’s activated sludge system performance at the transfer station still requires improvement to reduce the cost of the chemical treatment.


Sign in / Sign up

Export Citation Format

Share Document