scholarly journals Periods of constant and falling-rate for infrared drying of carrot slices

2011 ◽  
Vol 15 (8) ◽  
pp. 845-852 ◽  
Author(s):  
Fernando M. Botelho ◽  
Paulo C. Corrêa ◽  
André. L. D. Goneli ◽  
Márcio A. Martins ◽  
Felipe E. A. Magalhães ◽  
...  

The aim of this work was to study the infrared drying process of carrot slices and to determine coefficients related to the heat and mass transfer of the process. Fresh carrots were used, dried until constant weight in a dryer with infrared heating source. Different models were utilized to fit the experimental data of constant and falling drying rate periods. It was verified that the coefficients of heat and mass transfer, during the constant drying rate, significantly increased with temperature on rise. The Diffusion Approximation, Two Terms, Midili and Verna models satisfactory represented the falling period of drying rate of carrot slices. The effective diffusion coefficient increased with temperature and this relationship can be represented by the Arrhenius equation, obtaining activation energy to the drying process of 29.092 kJ mol-1.

Revista CERES ◽  
2017 ◽  
Vol 64 (5) ◽  
pp. 457-464 ◽  
Author(s):  
Fernanda Machado Baptestini ◽  
Paulo Cesar Corrêa ◽  
Gabriel Henrique Horta de Oliveira ◽  
Fernando Mendes Botelho ◽  
Ana Paula Lelis Rodrigues de Oliveira

ABSTRACT Banana is one of the most consumed fruits in the world, having a large part of its production performed in tropical countries. This product possesses a wide range of vitamins and minerals, being an important component of the alimentation worldwide. However, the shelf life of bananas is short, thus requiring procedures to prevent the quality loss and increase the shelf life. One of these procedures widely used is drying. This work aimed to study the infrared drying process of banana slices (cv. Prata) and determine the heat and mass transfer coefficients of this process. In addition, effective diffusion coefficient and relationship between ripening stages of banana and drying were obtained. Banana slices at four different ripening stages were dried using a dryer with infrared heating source with four different temperatures (65, 75, 85, and 95 ºC). Midilli model was the one that best represented infrared drying of banana slices. Heat and mass transfer coefficients varied, respectively, between 46.84 and 70.54 W m-2 K-1 and 0.040 to 0.0632 m s-1 for temperature range, at the different ripening stages. Effective diffusion coefficient ranged from 1.96 to 3.59 × 10-15 m² s-1. Activation energy encountered were 16.392, 29.531, 23.194, and 25.206 kJ mol-1 for 2nd, 3rd, 5th, and 7th ripening stages, respectively. Ripening stages did not affect the infrared drying of bananas.


Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06201
Author(s):  
Alamrew B. Solomon ◽  
Solomon W. Fanta ◽  
Mulugeta A. Delele ◽  
Maarten Vanierschot

2014 ◽  
Vol 541-542 ◽  
pp. 722-726
Author(s):  
Jun Ming Hou ◽  
De Xu Yang ◽  
Ke Jia Wu

In this paper the drying process of ginkgo biloba is discussed. The process combined effect of convective Heat and mass transfer on hydromagnetic electrically conducting viscous, how to improve the ability of drying is an important problem. The heat transmission for drying process is discussed. The parameter of drying process is determined. The ginkgo biloba drying machine is developed and the key part of drying machine is designed. The whole drying machine is developed, which can enhance the ability of medical industry. The study can help the Optimization of drying process and the level of the ginkgo biloba drying.


2020 ◽  
Vol 6 (2) ◽  
pp. 81-87
Author(s):  
Zhanna Petrova ◽  
◽  
Kateryna Samoilenko ◽  
Vitaly Vishnevsky

Red beetroot is the main raw material which has a high content of betanine with antioxidant properties. An important emphasis in the processing of antioxidant raw materials by drying is to reduce energy consumption for the dehydration process, the maximum preservation of biologically active substances, and to reduce the cost of the final product. Drying is a complex and energy-intensive process. Therefore, to optimize energy consumption during drying and selection of rational modes of dehydration, it is necessary to apply the calculated analysis of heat and mass transfer on the basis of adequate mathematical models. Calculated and experimental results are compared. In general, the comparison of the results of numerical modeling of convection drying processes of the red beetroot sample with the experimental results showed their rather satisfactory qualitative agreement. The calculation model can be used to approximate the characteristics of the drying process of red beetroot, in particular the time required for drying. The obtained results of calorimetric studies allow stating that with correctly selected compositions, not only the components of native raw materials are stabilized, but also the drying process is intensified with the reduction of energy consumption to process.


Author(s):  
You-Rong Li ◽  
Dan-Ling Zeng

Based on non-equilibrium thermodynamic theory and combined with the conservation laws, a comprehensive theoretical model was established to describe heat and mass transfer during convective drying process, and numerical calculation was performed. The results show that: (a) the external convective heat and mass transfer may be treated as the conductive heat transfer with internal heat source and the molecular mass diffusion with internal mass source, respectively, and the ability of heat and mass transfer mainly depends on the strength of the heat source and mass source; the higher the temperature of the drying media, the lower the strength of the internal heat source, but the higher that of the internal mass sources; (b) the evaporation of internal water takes place inside the whole material, and the molecular mass diffusion of the internal vapor is in the direction of decreasing mass transfer potential, not along the decreasing partial pressure of vapor.


2020 ◽  
Author(s):  
Eflita Yohana ◽  
Nazaruddin Sinaga ◽  
Haryo Pachusadewo ◽  
M. Irfan Nugraha ◽  
M. Endy Yulianto ◽  
...  

1973 ◽  
Vol 187 (1) ◽  
pp. 591-599
Author(s):  
J. F. T. MacLaren ◽  
A. A. Nicol ◽  
R. Wallace

Contact drying of fabric was studied using a two-roll steam-heated laundry calender. The effects on heat and mass transfer of steam temperature, fabric initial moisture content, fabric velocity, contact pressure and steam-side heat transfer coefficient were observed experimentally. Bed and roller surface temperature profiles were measured to assist in interpreting and subsequently analysing the drying process. The experimental results were correlated using dimensionless parameters derived from a dimensional analysis of a drying equation. An empirical expression was obtained that related the final moisture content of the fabric to the initial moisture content and the other pertinent physical variables.


2013 ◽  
Vol 397-400 ◽  
pp. 1078-1082
Author(s):  
Xin Yin Wu ◽  
Yao Fu ◽  
Yan Xu

Drying is one of the important chain of operations in agricultural industry, having important implications for maintaining edible quality and reducing the production loss of grain. International and domestic scholars have done a great deal of research about heat and mass transfer, change of grain quality, process monitoring and equipment during the process of grain drying, but none about the risk analysis of grain quality during the process of drying have been published yet. Therefore, based on the model of change of grain quality that is previously built, the paper intends put forward some suggestions on the production and application of grain drying equipment, adopting the AFSOM method in the procedure of risk analysis of grain drying quality.


Sign in / Sign up

Export Citation Format

Share Document