scholarly journals Surface properties and color stability of an acrylic resin combined with an antimicrobial polymer

2013 ◽  
Vol 42 (4) ◽  
pp. 237-242 ◽  
Author(s):  
Ana Carolina Pero ◽  
Jaqueline Ignárcio ◽  
Gabriela Giro ◽  
Danny Omar Mendoza-Marin ◽  
André Gustavo Paleari ◽  
...  

INTRODUCTION: The occurrence of stomatitis is common since the surface characteristics of the dentures may act as reservoirs for microorganisms and have the potential to support biofilm formation. PURPOSE: To assess the surface properties (wettability/roughness) and color stability of an acrylic resin combined with the antimicrobial polymer poly (2-tert-butylaminoethyl) methacrylate (PTBAEMA). MATERIAL AND METHOD: Thirty disc-shaped specimens of an acrylic resin (Lucitone 550) were divided into three groups: 0% (control); 5% and 10% PTBAEMA. Surface roughness values (Ra) were measured using a profilometer and wettability was determined through contact angle measurements using a goniometer and deionized water as a test liquid. Color data were measured with a spectrophotometer. Kruskal-Wallis and Dunn's test were used to compare roughness values. Wettability data were analyzed using ANOVA and Tukey's test. Color data were compared using the Student's t-test and ∆E values were classified according to the National Bureau of Standards (NBS). All statistical analyses were performed considering α=.05. RESULT: Significant differences (p<.05) were detected among the groups for roughness, wettability and color stability. According to the NBS, the color changes obtained in the 5% and 10% PTBAEMA groups were "appreciable" and "much appreciable", respectively. CONCLUSION: It could be concluded that PTBAEMA incorporation in an acrylic resin increased the roughness and wettability of surfaces and produced color changes with clinical relevance.

2013 ◽  
Vol 24 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Helena de Freitas Oliveira Paranhos ◽  
Amanda Peracini ◽  
Marina Xavier Pisani ◽  
Viviane de Cássia Oliveira ◽  
Raphael Freitas de Souza ◽  
...  

This study evaluated color stability, surface roughness and flexural strength of acrylic resin specimens after immersion in alkaline peroxide and alkaline hypochlorite, simulating a period of one and a half year of use of overnight immersion. Sixty disc-shaped (16X4 mm) and 80 rectangular specimens (65X10X3.3 mm) were prepared from heat-polymerized acrylic resin (Lucitone 550) and distributed into 4 groups (n=20): C1: without immersion, C2: 8 h immersion in distilled water; AP: 8 h immersion in alkaline peroxide effervescent tablet; SH: 8 h immersion in 0.5% NaOCl solution. Properties were evaluated at baseline and after the immersion. Color data were also calculated according the National Bureau of Standards (NBS). Results were analyzed statistically by ANOVA and Tukey's HSD test (α=0.05). AP (2.34 ± 0.41) caused color alteration significantly higher than C2 (0.39 ± 0.30) and SH (1.73 ± 0.52). The mean ΔE values were classified as indicial for C2 (0.36 ± 0.29) and noticeable for AP (2.12 ± 0.39) and SH (1.59 ± 0.48). SH (0.0195 ± 0.0150) caused significantly higher ΔRa (p=0.000) than the C2 (0.0005 ± 0.0115) and PA (0.0005 ± 0.0157) groups. There was no statistically significant difference (p=0.063) among the solutions for flexural strength (C1: 105.43 ± 14.93, C2: 100.30 ± 12.43, PA: 97.61 ± 11.09, SH: 95.23 ± 10.18). In conclusion, overnight immersion in denture cleansing solutions simulating a year and a half of use did not alter the flexural strength of acrylic resin but caused noticeable color alterations, higher for alkaline peroxide. The 0.5% NaOCl solution caused increase in surface roughness.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Cláudia Sousa ◽  
Pilar Teixeira ◽  
Rosário Oliveira

The aim of the present study was to compare the ability of eightStaphylococcus epidermidisstrains to adhere to acrylic and silicone, two polymers normally used in medical devices manufacture. Furthermore, it was tried to correlate that with the surface properties of substrata and cells. Therefore, hydrophobicity and surface tension components were calculated through contact angle measurements. Surface roughness of substrata was also assessed by atomic force microscopy (AFM). No relationship was found between microbial surface hydrophobicity and adhesion capability. Nevertheless,Staphylococcus epidermidisIE214 showed very unique adhesion behaviour, with cells highly aggregated between them, which is a consequence of their specific surface features. All strains, determined as being hydrophilic, adhered at a higher extent to silicone than to acrylic, most likely due to its more hydrophobic character and higher roughness. This demonstrates the importance of biomaterial surface characteristics for bacterial adhesion.


2018 ◽  
Vol 5 (4) ◽  
pp. 76
Author(s):  
Mone Laiz Bortoli ◽  
Cristina Von Appen ◽  
Camila Longoni ◽  
Carmen Beatriz Borges Fortes ◽  
Jefferson Tomio Sanada

Aim: This work aimed to evaluate the color stability of an acrylic resin chemically activated (ARCA) using different handling techniques, and a bisacrylic resin when exposed to different pigmentation solutions.Material and Methods: Silicon matrixes were confectioned (10x10x3mm) to be used as specimens. The groups were designed as follows: Group Pot, Group Brush, Group Manufacturer and Group Bisacrylic (n=18). Each group was exposed to three different pigmentation solutions: distilled water, coke and chlorhexidine digluconate 0.12%. Three readings were performed for each specimen using a spectrophotometer, and the evaluations were carried out in three different time. After the color reading, three averages and the standard deviation of variation were performed after 24 hours (T1), 7 days (T2) and 14 days (T3). Data were submitted to the ANOVA and 2 criteria and Tukey (P<0.05) in the statistical software SSPS 18 for Macintosh (SPSS Inc., Chicago, USA).Results: When compared the solutions in each group of material, there was no statistically significant difference, except for T3, where the group Dencor Brush and Bisacrylic demonstrated higher color variation in all the solutions, even in the control group, and the values in Chlorhexidine higher than the other, showing greater instability after 14 days.Conclusions: With the results, bisacrylic resin used as provisory prosthesis material presents greater color instability than the ARCA, when submitted to different solutions. Bisacrylic resin and Dencor Brush present significantly visible color changes in chlorhexidine solution after 14 days. All the materials in coke solution present homogeneity in the color change after 7 days exposition to the solution, with no visible color change.


1999 ◽  
Vol 217 (1) ◽  
pp. 94-106 ◽  
Author(s):  
Maria Helena Ventura Cabral Adão ◽  
Benilde Jesus Vieira Saramago ◽  
Anabela Catarino Fernandes

2015 ◽  
Vol 26 (4) ◽  
pp. 404-408 ◽  
Author(s):  
Carolina Noronha Ferraz Arruda ◽  
Danilo Balero Sorgini ◽  
Viviane de Cássia Oliveira ◽  
Ana Paula Macedo ◽  
Cláudia Helena Silva Lovato ◽  
...  

<p>This study evaluated color stability, surface roughness and flexural strength of acrylic resin after immersion in alkaline peroxide and alkaline hypochlorite solutions, simulating a five-year-period of use. Sixty disc-shaped (16x4 mm) and 60 rectangular specimens (65x10x3.3 mm) were prepared from heat-polymerized acrylic resin (Lucitone 550) and assigned to 3 groups (n=20) of immersion (20 min): C1: distilled water; AP: warm water and one alkaline peroxide tablet; SH: 0.5% NaOCl solution. Color data (∆E) were determined by a colorimeter and also quantified according to the National Bureau of Standards units. A rugosimeter was used to measure roughness (μm) and the flexural strength (MPa) was measured using a universal testing machine. Data were evaluated by Kruskal-Wallis followed by Dunn tests (color stability and surface roughness) and by one-way ANOVA and Bonferroni test (flexural strength). For all tests was considered α=0.05. AP {0.79 (0.66;1.42)} caused color alteration significantly higher than C1 {0.45 (0.37;0.57)} and SH {0.34 (0.25;0.42)}. The mean ∆Ε values quantified by NBS were classified as "trace" for C1 (0.43) and SH (0.31) and "slight" for AP (0.96). SH {-0.015 (-0.023;0.003)} caused significantly higher ΔRa than the C1 {0.000 (-0.004;0.010)} and AP {0.000 (-0.009;0.008)} groups. There was no statistically significant difference among the solutions for flexural strength (C1: 84.62±16.00, AP: 85.63±12.99, SH: 84.22±14.72). It was concluded that immersion in alkaline peroxide and NaOCl solutions simulating a five-year of 20 min daily soaking did not cause clinically significant adverse effects on the heat-polymerized acrylic resin.</p>


2007 ◽  
Vol 74 (3) ◽  
pp. 731-737 ◽  
Author(s):  
R. B. Seale ◽  
S. H. Flint ◽  
A. J. McQuillan ◽  
P. J. Bremer

ABSTRACT Spores from four Geobacillus spp. were isolated from a milk powder manufacturing line in New Zealand. Liquid sporulation media produced spore yields of ∼107 spores ml−1; spores were purified using a two-phase system created with polyethylene glycol 4000 and 3 M phosphate buffer. The zeta potentials of the spores from the four isolates ranged from −10 to −20 mV at neutral pH, with an isoelectric point between pH 3 and 4. Through contact angle measurements, spores were found to be hydrophilic and had relative hydrophobicity values of 10 to 40%, as measured by the microbial adhesion to hexadecane assay. The most hydrophilic spore isolate with the smallest negative charge attached in the highest numbers to Thermanox and stainless steel (1 × 104 spores cm−2), with fewer spores attaching to glass (3 × 103 spores cm−2). However, spores produced by the other three strains attached in similar numbers (P > 0.05) to all substrata (∼1 × 103 spores cm−2), indicating that there was no simple relationship between individual physicochemical interactions and spore adherence. Therefore, surface modifications which limit the attachment of one strain may not be effective for all stains, and control regimens need to be devised with reference to the characteristics of the particular strains of concern.


2021 ◽  
pp. X
Author(s):  
Shih-Hang CHANG ◽  
Yuan-Ting TSAO ◽  
Kuan-Wei TUNG

In this study, we investigate the effect of heat treatment on the surface properties of carbon cloth electrodes and on the power generation efficiencies of microbial fuel cells (MFCs) configured with the heat-treated carbon cloth electrodes. Water contact angle measurements show that the hydrophobic surfaces of the carbon cloth became super-hydrophilic after heat treatment at a temperature above 500 °C, making it suitable for bacterial propagation. X-ray photoelectron spectrometry revealed that the signal of the C-O functional group of the carbon cloth electrodes increased in intensity after heat treatment. The MFCs configured with heat-treated carbon cloth electrode exhibited high power density of 16.58 mW/m2, whereas that of the untreated MFCs was only 8.86 mW m2. Compared with other chemical modifications, heat treatment does not use any environmentally unsound acidic or toxic solutions during modification and are promising for manufacturing large-scale MFC stacks.


2001 ◽  
Vol 10 (5) ◽  
pp. 096369350101000 ◽  
Author(s):  
J. Bousoulas ◽  
P. A. Tarantili ◽  
A. G. Andreopoulos

A comparative study was made in order to evaluate the interfacial characteristics of treated aramid fibres and epoxy resins. Surface treatment by coating with phenolic resins was performed using the following two systems: a) alkaline aqueous solution of resole resin and b) solution of novolac resin containing hexamethylene-tetramine as cross-linking agent. After these treatments, the modified aramid fibres were used for the preparation of reinforced epoxy specimens. The flexural properties of these specimens were determined and the results were discussed taking into consideration the surface characteristics of the modified fibres, as derived from pull-out tests and contact angle measurements. It was shown that both coatings are adequate to promote interfacial adhesive bonding to epoxy matrices due to the chemical reactivity of phenolic resins to the epoxy matrix as well as to their affinity with the aramid fibre surface. Resole appeared more efficient than novolac as it produces uniform continuous films, shows increased reactivity due to its higher hydroxyl content and can be easily processed because it is soluble in alkaline water solutions.


Sign in / Sign up

Export Citation Format

Share Document