scholarly journals Causes, effects and connectivity changes in MS-related cognitive decline

2016 ◽  
Vol 10 (1) ◽  
pp. 2-11 ◽  
Author(s):  
Carolina de Medeiros Rimkus ◽  
Martijn D. Steenwijk ◽  
Frederik Barkhof

Cognitive decline is a frequent but undervalued aspect of multiple sclerosis (MS). Currently, it remains unclear what the strongest determinants of cognitive dysfunction are, with grey matter damage most directly related to cognitive impairment. Multi-parametric studies seem to indicate that individual factors of MS-pathology are highly interdependent causes of grey matter atrophy and permanent brain damage. They are associated with intermediate functional effects (e.g. in functional MRI) representing a balance between disconnection and (mal) adaptive connectivity changes. Therefore, a more comprehensive MRI approach is warranted, aiming to link structural changes with functional brain organization. To better understand the disconnection syndromes and cognitive decline in MS, this paper reviews the associations between MRI metrics and cognitive performance, by discussing the interactions between multiple facets of MS pathology as determinants of brain damage and how they affect network efficiency.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Miklos Palotai ◽  
Aria Nazeri ◽  
Michele Cavallari ◽  
Brian C. Healy ◽  
Bonnie Glanz ◽  
...  

Abstract Fatigue in multiple sclerosis (MS) has been associated with brain damage with low replicability. Temporal fatigue fluctuations have not been considered. We assessed whether sustained fatigue (SF) associates more strongly with grey matter (GM) changes than reversible fatigue (RF). Patients were stratified into three groups according to historical fatigue levels: SF (n = 30, i.e. patients who reported fatigue at the latest ≥2 assessments), RF (n = 31, i.e. patients not fatigued at the latest assessment, but reported fatigue previously), and never fatigued (NF, n = 37). Groups were compared for brain GM volume using cross-sectional voxel-based and volumetric analyses of 3T T1-weighted MRI. Confounding effects of depression and related medications were also investigated. SF and RF patients showed similar anatomical distribution of GM atrophy. While we robustly replicated the anatomical patterns of GM atrophy described in previous work, we also found an association between hippocampal atrophy and fatigue. Depression showed confounding effects in frontal, parietal, occipital, accumbal and thalamic regions. Assessed treatments showed confounding effects in frontal, parietal and striatal areas. Our results suggest that history of clinically-relevant fatigue in currently non-fatigued patients is associated with GM atrophy, potentially explaining inconsistent findings of previous studies that stratified patients using a single fatigue assessment.


2019 ◽  
Vol 15 ◽  
pp. P1052-P1052
Author(s):  
Elizabeth E. Moore ◽  
Dandan Liu ◽  
Kimberly R. Pechman ◽  
Lealani Mae Y. Acosta ◽  
Susan P. Bell ◽  
...  

2019 ◽  
Vol 22 ◽  
pp. 101786 ◽  
Author(s):  
Ellen Dicks ◽  
Lisa Vermunt ◽  
Wiesje M. van der Flier ◽  
Pieter Jelle Visser ◽  
Frederik Barkhof ◽  
...  

2019 ◽  
Vol 1 (8) ◽  
pp. 42-50
Author(s):  
A. V. Budkevich ◽  
L. B. Ivanov ◽  
G. R. Novikova ◽  
G. M. Dzhanumova

According to the authors, rationing the age-related EEG parameters in children should be based on personal psychical characteristics. A comparative analysis of personal psychical characteristics and electroencephalographic data was carried out in 300 apparently healthy children aged 3-15 years. According to this principle, two subgroups of conditionally healthy children in each age group were singled out: 1) with an immature attention function and 2) with an increased anxious background that do not reach the pathological level. Registration and analysis of EEG was performed by the Neurokariograf computer complex (MBN, Moscow) using mathematical processing methods.The EEG interpretation was based on the principle of assessing the functional state of a child's brain using a three-component model according to: 1) wakefulness level and its dissociation, 2) severity of signs of the EEG neurotic pattern, 3) directionality of formation of traits of the system-functional brain organization (severity of signs functional hypofrontality).lt was found the presence of EEG signs was indicative of a lower level of wakefulness in children with an immature function of attention in all age groups, compared with the indicators of the average population of group and children with an increased background of anxiety. Children with an increased background of anxiety have a tendency to prevalence and excessive spatial synchronization of the alpha rhythm. ln healthy children, the fact of a decrease in wakefulness and the presence of signs of anxiety in the clinic and in EEG patterns indicates individual personalities and should not be considered as pathology.


2019 ◽  
Author(s):  
Justin C. Hayes ◽  
Katherine L Alfred ◽  
Rachel Pizzie ◽  
Joshua S. Cetron ◽  
David J. M. Kraemer

Modality specific encoding habits account for a significant portion of individual differences reflected in functional activation during cognitive processing. Yet, little is known about how these habits of thought influence long-term structural changes in the brain. Traditionally, habits of thought have been assessed using self-report questionnaires such as the visualizer-verbalizer questionnaire. Here, rather than relying on subjective reports, we measured habits of thought using a novel behavioral task assessing attentional biases toward picture and word stimuli. Hypothesizing that verbal habits of thought are reflected in the structural integrity of white matter tracts and cortical regions of interest, we used diffusion tensor imaging and volumetric analyses to assess this prediction. Using a whole-brain approach, we show that word bias is associated with increased volume in several bilateral language regions, in both white and grey matter parcels. Additionally, connectivity within white matter tracts within an a priori speech production network increased as a function of word bias. These results demonstrate long-term structural and morphological differences associated with verbal habits of thought.


Author(s):  
William D. Hopkins ◽  
Cheryl D. Stimpson ◽  
Chet C. Sherwood

Bonobos and chimpanzees are two closely relates species of the genus Pan, yet they exhibit marked differences in anatomy, behaviour and cognition. For this reason, comparative studies on social behaviour, cognition and brain organization between these two species provide important insights into evolutionary models of human origins. This chapter summarizes studies on socio-communicative competencies and social cognition in chimpanzees and bonobos from the authors’ laboratory in comparison to previous reports. Additionally, recent data on species differences and similarities in brain organization in grey matter volume and distribution is presented. Some preliminary findings on microstructural brain organization such as neuropil space and cellular distribution in key neurotransmitters and neuropeptides involved in social behaviour and cognition is presented. Though these studies are in their infancy, the findings point to potentially important differences in brain organization that may underlie bonobo and chimpanzees’ differences in social behaviour, communication and cognition. Les bonobos et les chimpanzés sont deux espèces du genus Pan prochement liées, néanmoins ils montrent des différences anatomiques, comportementales et cognitives marquées. Pour cette raison, les études comparatives sur le comportement social, la cognition et l’organisation corticale entre ces deux espèces fournissent des idées sur les modèles évolutionnaires des origines humaines. Dans ce chapitre, nous résumons des études sur les compétences socio-communicatives et la cognition sociale chez les chimpanzés et les bonobos de notre laboratoire en comparaison avec des rapports précédents. En plus, nous présentons des données récentes sur les différences et similarités d’organisation corticale du volume et distribution de la matière grise entre espèces. Nous présentons plus de résultats préliminaires sur l’organisation corticale microstructurale comme l’espace neuropile et la division cellulaire dans des neurotransmetteurs clés et les neuropeptides impliqués dans le comportement social et la cognition. Bien que ces études sont dans leur enfance, les résultats montrent des différences d’organisation corticale importantes qui sont à la base des différences de comportement social, la communication et la cognition entre les bonobos et les chimpanzés.


2006 ◽  
Vol 105 (6) ◽  
pp. 1081-1086 ◽  
Author(s):  
Frederick W. Cheney ◽  
Karen L. Posner ◽  
Lorri A. Lee ◽  
Robert A. Caplan ◽  
Karen B. Domino

Background The authors used the American Society of Anesthesiologists Closed Claims Project database to determine changes in the proportion of claims for death or permanent brain damage over a 26-yr period and to identify factors associated with the observed changes. Methods The Closed Claims Project is a structured evaluation of adverse outcomes from 6,894 closed anesthesia malpractice claims. Trends in the proportion of claims for death or permanent brain damage between 1975 and 2000 were analyzed. Results Claims for death or brain damage decreased between 1975 and 2000 (odds ratio, 0.95 per year; 95% confidence interval, 0.94-0.96; P < 0.01). The overall downward trend did not seem to be affected by the use of pulse oximetry and end-tidal carbon dioxide monitoring, which began in 1986. The use of these monitors increased from 6% in 1985 to 70% in 1989, and thereafter varied from 63% to 83% through the year 2000. During 1986-2000, respiratory damaging events decreased while cardiovascular damaging events increased, so that by 1992, respiratory and cardiovascular damaging events occurred in approximately the same proportion (28%), a trend that continued through 2000. Conclusion The significant decrease in the proportion of claims for death or permanent brain damage from 1975 through 2000 seems to be unrelated to a marked increase in the proportion of claims where pulse oximetry and end-tidal carbon dioxide monitoring were used. After the introduction and use of these monitors, there was a significant reduction in the proportion of respiratory and an increase in the proportion of cardiovascular damaging events responsible for death or permanent brain damage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephanie Langella ◽  
◽  
Muhammad Usman Sadiq ◽  
Peter J. Mucha ◽  
Kelly S. Giovanello ◽  
...  

AbstractWith an increasing prevalence of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) in response to an aging population, it is critical to identify and understand neuroprotective mechanisms against cognitive decline. One potential mechanism is redundancy: the existence of duplicate elements within a system that provide alternative functionality in case of failure. As the hippocampus is one of the earliest sites affected by AD pathology, we hypothesized that functional hippocampal redundancy is protective against cognitive decline. We compared hippocampal functional redundancy derived from resting-state functional MRI networks in cognitively normal older adults, with individuals with early and late MCI, as well as the relationship between redundancy and cognition. Posterior hippocampal redundancy was reduced between cognitively normal and MCI groups, plateauing across early and late MCI. Higher hippocampal redundancy was related to better memory performance only for cognitively normal individuals. Critically, functional hippocampal redundancy did not come at the expense of network efficiency. Our results provide support that hippocampal redundancy protects against cognitive decline in aging.


Sign in / Sign up

Export Citation Format

Share Document