scholarly journals In vitro mycelial sensitivity of Macrophomina phaseolina to fungicides

2013 ◽  
Vol 43 (4) ◽  
pp. 460-466 ◽  
Author(s):  
Rosane Fátima Baldiga Tonin ◽  
Aveline Avozani ◽  
Anderson Luiz Durante Danelli ◽  
Erlei Melo Reis ◽  
Sandra Maria Zoldan ◽  
...  

Black root rot, caused by Macrophomina phaseolina (Tass.) Goid., is the most common root disease in soybean fields. This study aimed to determine the in vitro mycelial sensitivity, measured by the IC50 (concentration to inhibit 50% of the fungus mycelial growth) of a M. phaseolina isolate obtained from soybean, to different fungicides (thiram, iprodione, carbendazim, pyraclostrobin, fluquinconazol, tolyfluanid, metalaxyl and penflufen + trifloxystrobin), at six concentrations (0.01 mg L-1, 0.10 mg L-1, 1.00 mg L-1, 10.00 mg L-1, 20.00 mg L-1 and 40.00 mg L-1 of the active ingredient). The 0.00 mg L-1 concentration represented the control, without fungicide addition. The mycelial growth evaluation was performed with the aid of a digital pachymeter, by measuring the colonies diameter, when the fungus growth in the control treatment reached the Petri dish edge. The experimental design was completely randomized, with four replications. Concerning the fungitoxicity of active ingredients, a variation from non-toxic to highly fungitoxic was observed to the M. phaseolina isolate, with IC50 values ranging from 0.23 mg L-1 to > 40.00 mg L-1, being carbendazim the most efficient one (IC50 = 0.23 mg L-1). The fungus showed insensitivity to the active ingredients of fluquinconazole, metalaxyl, thiram and tolyfluanid.

2010 ◽  
Vol 25 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Natasa Duduk ◽  
Aleksa Obradovic ◽  
Mirko Ivanovic

Effects of the volatile phase of thyme, cinnamon and clove essential oils on Colletotrichum acutatum were investigated. Mycelial disc was placed in the center of the Petri dish (V=66 ml) containing PDA. Different volumes of either non- or ethanol-diluted essential oils were placed on the inner side of the dish cover to obtain final concentrations of 153, 107, 76, 46, 15, 14, 12, 11, 7.6, 3.82, 1.53, 0.153 and 0.0153 ?l/L of air. The dishes were sealed with Parafilm and incubated in up-side-down position. After 7 days of incubation, mycelial growth was recorded by measuring the colony diameter. If no mycelial growth was recorded, the disc was transferred to a new PDA plate in order to evaluate whether the activity was either fungistatic or fungicidal. Mean growth values were obtained and then converted to inhibition percentage of mycelial growth compared with the control treatment. All the tested essential oils inhibited mycelial growth of C. acutatum in the dose dependent manner. Mycelial growth was totally inhibited by thyme oil in the concentration of 76 ?l/L of air. The same results were obtained by cinnamon and clove oil in the concentration of 107 ?l/L of air. Thyme and cinnamon oil had fungicidal effect in concentrations of 107 and 153 ?l/L respectively. The results obtained provide evidence on the antifungal in vitro effect of the tested essential oils as potential means for the control of C. acutatum.


2017 ◽  
Vol 6 (9) ◽  
pp. 1676 ◽  
Author(s):  
Ramaraju Cherkupally ◽  
Srinivasa Reddy Kota ◽  
Hindumathi Amballa ◽  
Bhumi Narasimha Reddy

The antifungal activity of aqueous extracts of nine plants viz, Azadirachta indica, Parthenium hysterophorus, Momordica charantia, Allium sativum, Eucalyptus globules, Calotropis procera, Aloe vera, Beta vulgaris and Datura stramonium were assessed in vitro against Fusarium oxysporum f. sp. melongenae, Rhizoctonia solani and Macrophomina phaseolina, the soil borne phytopathogens. The assessment of fungitoxic effect was carried out by using three different concentrations i.e., 5, 10 and 20% against the test fungi, in terms of percentage of mycelial growth inhibition. The extract of A. sativum completely inhibited the mycelial growth of M. phaseolina at all the concentrations. The extracts of D. stramonium and E. globulus inhibited the mycelial growth of R. solani of 72%, and 70.7% respectively at 20% concentration, that of A. sativum, E. globulus and D. stramonium exhibited inhibition percentage of 63.3%, 61.8% and 61.1% respectively at 20% concentration on Fusarium oxysporum f. sp. melongenae. The application of plant extracts for disease management could be less expensive, easily available, non-polluting and eco-friendly.


2018 ◽  
Vol 31 (1) ◽  
pp. 99-105
Author(s):  
KEILOR DA ROSA DORNELES ◽  
PAULO CESAR PAZDIORA ◽  
FÁBIO JÚNIOR ARAÚJO SILVA ◽  
RENATA MOCCELLIN ◽  
CÂNDIDA RENATA JACOBSEN FARIAS

ABSTRACT This study was conducted to evaluate the use of Curcuma longa (Linnaeus) extract in the in vitro control of Bipolaris oryzae (Breda de Haan) and to characterize the effect of this extract on rice seed germination. A completely randomized arranged in a factorial experimental design was used: three isolates of B. oryzae from rice seed from different rice-growing regions of Rio Grande do Sul (Fronteira Oeste, Campanha, and Sul) were tested with three concentrations (20, 40, and 80 mg/mL) of C. longa plus a control treatment (0 mg/mL). Each reaction was repeated in quadruplicate. The effect of the extract upon the disease development was evaluated based on mycelial growth (PMG) and spore production; rice seed germination was evaluated using a germination test (Germitest®). The PMG results demonstrate that the treatments were effective in reducing PMG, with a stronger response observed as the concentration of the extract increased. An average inhibition of 84% of sporulation was observed for the tested strains compared with the control treatment. There were, however, no significant differences in terms of seed germination test with the different C. longa concentrations. Therefore, treatment of rice seeds with C. longa extract does not affect seed germination but positively inhibits mycelial growth and sporulation, affecting the in vitro sporulation of the different isolates of B. oryzae.


2020 ◽  
Vol 80 (2) ◽  
pp. 460-464 ◽  
Author(s):  
A. L. B. Dias ◽  
W. C. Sousa ◽  
H. R. F. Batista ◽  
C. C. F. Alves ◽  
E. L. Souchie ◽  
...  

Abstract Essential oils (EO) from aromatic and medicinal plants generally perform a diverse range of biological activities because they have several active constituents that work in different mechanisms of action. EO from Citrus peel have an impressive range of food and medicinal uses, besides other applications. EO from Citrus reticulata, C. sinensis and C. deliciosa were extracted from fruit peel and analyzed by GC-MS. The major constituent of EO under evaluation was limonene, whose concentrations were 98.54%, 91.65% and 91.27% for C. sinensis, C. reticulata and C. deliciosa, respectively. The highest potential of inhibition of mycelial growth was observed when the oil dose was 300 μL. Citrus oils inhibited fungus growth in 82.91% (C. deliciosa), 65.82% (C. sinensis) and 63.46% (C. reticulata). Anti-Sclerotinia sclerotiorum activity of 90% pure limonene and at different doses (20, 50, 100, 200 and 300 μL) was also investigated. This monoterpene showed to be highly active by inhibiting 100% fungus growth even at 200 and 300 μL doses. This is the first report of the in vitro inhibitory effect of natural products from these three Citrus species and its results show that there is good prospect of using them experimentally to control S. sclerotiorum, in both greenhouse and field conditions.


Author(s):  
Maria Luísa Mendes Rodrigues ◽  
Edson Hiydu Mizobutsi ◽  
Paola Junayra Lima Prates ◽  
Paula Virgínia Leite Duarte ◽  
Regina Cássia Ferreira Ribeiro ◽  
...  

Aims: The aim of this study was to evaluate the in vitro effect of different phosphite formulations and concentrations on the development of Colletotrichum musae. Sample: to evaluate the inhibition of germination, mycelial growth and sporulation of Colletotrichum musae. Study Design:  Treatments were conducted in a completely randomized design, with 4 replicates, each replicate consisting of 1 Petri dish. Place and Duration of Study:  Laboratory of Post-Harvest Pathology, State University of Montes Claros, between March and October 2017. Methodology: Three different phosphite formulations were used: FCu1 (4% Cu + 20% P2O5), FCu2 (4% Cu + 22% P2O5) at concentrations of 0.5;1.0; 1.5 and 2.0 mL L-1 and FK (42% P2O5 + 27.7% K2O) at concentrations of 0.5; 1.0; 1.5 and 2.0 mg.L-1. Products were incorporated into the respective culture media. Culture medium alone and culture medium + imazalil were used as controls. Petri dishes were housed in BOD chamber at 25°C under a 12 hours photoperiod. Results: Results were submitted to analysis of variance and regression, and means were compared by the Tukey test (P <0.05). Control was compared to the other treatments by the Dunnet's test (P <0.05). Among the tested phosphite formulations, copper and potassium phosphites were found to reduce the mycelial growth of Colletotrichum musae. FCu2 presents a fungicide-like effect from the concentration of 0.5 m.L-1 in the control of conidia production. As for the FCu1, a fungicide-like effect was observed in the control of germination from the concentration of 1.5 mL.L-1. Conclusion: A significant fungistatic effect was observed between the concentrations of the products in the mycelial growth, sporulation and germination obtaining control of up to 100% of the development of C. musae. Copper phosphites were as effective as fungicide in inhibiting fungal development.


2021 ◽  
Vol 8 (1) ◽  
pp. 53-65
Author(s):  
Rini Laraswati ◽  
Umi Kulsum ◽  
Evan Purnama Ramdan

One of the important diseases in rice is the Bacterial Leaf Blight (HDB) or the so-called kresek disease caused by Xanthomonas oryzae pv. oryzae. This disease is one of the main diseases of rice in Indonesia. This is supported by agricultural conditions in hot and humid tropical areas so that disease development is more optimal. The purpose of this study was to determine the efficacy of betel leaf extract and some rhizomes in suppressing the growth of Xanthomonas oryzae pv. oryzae in-vitro scale. The research was conducted at the Center for Forecasting Plant Pest Organisms (BBPOPT), Karawang, West Java. The extracts of galangal, turmeric, and betel were prepared at concentrations of 10, 15, and 25%, the method used was a scatter plate by taking 10, 50, and 100 μL of Xoo isolate liquid, holding the petri dish to a bunsen fire, and spraying Xoo isolates liquid. into a petri dish containing PSA media + rhizome extract, the dispersing tool used is drigalski. The results of daily observations of rhizome extract antagonist testing on Xoo growth showed that the treatment of betel leaf extract with a concentration of 10%, 15%, and 25% had a high bacterial inhibitory value compared to other treatments with 100% inhibition, whereas in the control treatment (only PSA media) shows that it does not have bacterial inhibition, and the galangal rhizome extract treatment has the highest inhibitory power when compared to other treatments on 100 μL of Xoo bacterial suppression.


2012 ◽  
Vol 48 (No. 3) ◽  
pp. 110-115 ◽  
Author(s):  
D. Alice ◽  
S. Sundravadana

Gloriosa superba is a medicinal plant severely infested with soil-borne Macrophomina phaseolina (Tassi) Goid. Under in vitro conditions a commercial formulation of Trichoderma viride and Pseudomonas fluorescens inhibited the mycelial growth of M. phaseolina isolates. Among the oil cake, mahua cake at 10% completely inhibited the mycelial growth of the M. phaseolina isolates. Under field conditions both the soil and foliar application of biocontrol agents is attributed to the healthy growth of G. superba crops by controlling the tuber rot disease and ultimately boosting the colchicine content.


2021 ◽  
Vol 923 (1) ◽  
pp. 012024
Author(s):  
Salam Hakem Bread Al-Absawy ◽  
Jamal Hussein Kahdim ◽  
Ali Ajil Jassim Al-Haidery

Abstract Cucumber is one of important crops and susceptible to root disease caused by Rhizoctonia solani. The study aimed to evaluate the efficiency of two isolates of P. ostreatus (Ah and Ak) and soil treatment with several rates of Typha domingensis residues fermented by P. ostreatus to control R. solani that causes root diseases on cucumbers. In vitro trails, R. solani inhibited significantly by isolate (Ah) as well as redial mycelial growth and the percentage of cucumber seeds germination. In field trails, the number of germinated seedlings was highest at fermented T. domingensis 59.81 compare to control treatment which was 59.81. Disease severity (DS) of root damage was recorded in R. solani and R. solani + Fermented T. domingensis treatments and reached 70.4 and 64.27 respectively.


2014 ◽  
Vol 40 (3) ◽  
pp. 231-247 ◽  
Author(s):  
Aveline Avozani ◽  
Rosane Baldiga Tonin ◽  
Erlei Melo Reis ◽  
Juliane Camera ◽  
Camila Ranzi

Head blight of wheat is a disease of global importance. In Brazil, it can cause damage of up to 27%. As resistant cultivars are not available yet, short-term disease control relies on the use of fungicides. The first step to reach effective management is to identify potent fungicides. In vitro experiments were conducted to determine the inhibitory concentration 50% (IC50) for mycelial growth or conidial germination, according to the chemical group of fungicides, of five Fusarium graminearum isolates of different origins. The following demethylation inhibitor (DMI) fungicides were tested: epoxiconazole, cyproconazole, metconazole, prochloraz, protioconazole and tebuconazole. In addition, azoxystrobin, kresoxim-methyl, pyraclostrobin and trifloxystrobin were included in the study, representing Quinone outside inhibitor fungicides (QoI), as well as a tubulin synthesis inhibitor, carbendazim and two ready mixtures, trifloxystrobin + tebuconazole or trifloxistrobin + prothioconazole. DMI's showed lower IC50 values compared to the QoI's. For the five tested isolates, in the overall mean, IC50 considering mycelial growth ranged for DMI's from 0.01 mg/L (metconazole, prochloraz and prothioconazole) to 0.12 mg/L (cyproconazole) and considering conidial germination for QoI's from 0.21 mg/L (azoxystrobin) to 1.33 mg/L (trifloxystrobin). The IC50 for carbendazim was 0.07 mg/L. All tested isolates can be considered sensitive to the studied DMI's, although certain differences in sensitivity could be detected between the isolates originating from one same state.


Plant Disease ◽  
2014 ◽  
Vol 98 (1) ◽  
pp. 99-102 ◽  
Author(s):  
J. A. LaMondia

Calonectria pseudonaviculata causes leaf spot and stem lesions resulting in defoliation and dieback of boxwood. Fungicides representing 20 different active ingredients from 13 different Fungicide Resistance Action Committee groups were evaluated for their effects on conidial germination and mycelial growth using in vitro assays, and the concentration that suppressed fungal growth to 15% of that on unamended media (EC85) values were determined. A number of fungicides strongly inhibited mycelial growth of C. pseudonaviculata. Four demethylation inhibitor fungicides had EC85 values of 1.2 μg a.i./ml or less. Thiophanate-methyl, fludioxonil, pyraclostrobin, trifloxystrobin, kresoxim-methyl, mancozeb, and chlorothalonil also had activity against mycelial growth. Fludioxonil + cyprodinil had a lower EC85 than the same rate of fludioxonil alone, suggesting that cyprodinil had activity against mycelial growth. Fungicides that inhibited C. pseudonaviculata conidial germination include pyraclostrobin, trifloxystrobin, and kresoxim-methyl as well as fludioxonil, mancozeb, chlorothalonil, and boscalid. Quinoxyfen, etridiazole, fenhexamid, hymexazol, famoxadone, and cymoxanil did not inhibit either C. pseudonaviculata conidial germination or mycelial growth. In comparison with values found in the literature, EC50 values for kresoxim-methyl were up to 10 times higher than reported previously, suggesting that fungicide insensitivity may have developed. Protectant fungicides with activity against conidial germination and systemic fungicides with activity against mycelial growth, such as those identified here, may be complementary to achieve the high levels of pathogen management required for control of this disease. In addition, multiple fungicide active ingredients from different mode-of-action groups used in mixtures or over time may also act to slow selection for fungicide insensitivity.


Sign in / Sign up

Export Citation Format

Share Document