scholarly journals Ultimate flexural strength of prestressed concrete beams: validation and model error evaluation

2018 ◽  
Vol 11 (2) ◽  
pp. 307-330
Author(s):  
M. W. MOURA ◽  
M. V. REAL ◽  
D. D. LORIGGIO

Abstract In this work a computational model is presented to evaluate the ultimate bending moment capacity of the cross section of reinforced and prestressed concrete beams. The computational routines follow the requirements of NBR 6118: 2014. This model is validated by comparing the results obtained with forty-one experimental tests found in the international bibliography. It is shown that the model is very simple, fast and reaches results very close to the experimental ones, with percentage difference of the order of 5%. This tool proved to be a great ally in the structural analysis of reinforced and prestressed concrete elements, besides it is a simplified alternative to obtain the cross section ultimate bending moment.


Author(s):  
Bogdan I. BEDELEAN ◽  
Iosif NECULĂEȘ ◽  
Cosmin G. SPÎRCHEZ ◽  
Sergiu RĂCĂȘAN

In this work, the influence of the number of dowels and the option to place the dowels in the cross section of part on the bending moment capacity of heat-treated wood dowel joints was analysed. The joints, which were made of heat-treated ash, were tested by means of a universal testing machine.The ultimate failure load and the moment arms were used to figure out the bending moment capacity of the joints loaded in compression or in tension. The number of dowels affected the tensile strength of the L-shaped heat-treated wood joints. The modality to place the dowels in the cross section of rail, namely, in collinearity or in a triangular shape, did not significantly affect the strength of the heat-treated wood dowel joints.



Author(s):  
Dennis Birkner ◽  
Steffen Marx

<p>For a better estimation of the fatigue lifetime of real structures, tests on large-scale beam specimens are more suitable than on common cylindrical specimens, since effects like local stiffness changes and stress redistributions can be reproduced more realistically. This article presents an experimental setup for large-scale concrete beams subjected to fatigue loading. Additionally, the fatigue tests are simulated with a numerical model. The results of the numerical analysis show a successively increasing damage propagating from the edge into the inner part of the cross-section in the mid span with increasing number of cycles. This results in stress redistributions which extend the lifetime of the structure. The evaluation of the experimental investigation on the first beam specimen shows a larger stiffness degradation at the upper edge than in the centre of the cross-section as well as increasing strains at this location. This matches the expected effects from the numerical analysis.</p>



Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3814
Author(s):  
Stanisław Kut ◽  
Feliks Stachowicz ◽  
Grzegorz Pasowicz

The springback phenomenon occurring during cold forming is the main problem affecting the dimensional accuracy of bent products, especially when bending thin-walled profiles, where there are significant changes in the cross-section geometry. This article presents the results of the analysis of the springback phenomenon occurring during shaping with a pure bending moment of square tubes with the cross-sectional dimensions of 21.5 × 21.5 × 1.8 mm and 25 × 25 × 2.5 mm made of aluminum alloy 6060. The springback characteristics were determined by defining the dependence of the springback coefficient on the set bending radius of the band. The values of the springback coefficient were provided by means of analytical calculations and numerical modeling, which considered changes in the moment of inertia caused by deformation of the cross-section occurring during bending of the pipes. A good agreement of the calculation results with the results of experimental tests was obtained. In addition, the stress state and the state of deformation, as well as the springback characteristics of square-section pipes were compared with the results obtained during bending of a solid bar with the cross-sectional dimensions of 21.5 × 21.5 mm.



Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5170
Author(s):  
Stanisław Kut ◽  
Feliks Stachowicz

When bending thin-walled profiles, significant distortion of the cross-section occurs, which has a significant impact on the course of the bending moment characteristics and on the value of allowable bending curvatures. This paper presents the results of experimental and numerical modeling of the box profile bending process, which was carried out in order to determine the dependence of the cross-sectional shape and bending moment of bending curvature. Extensive numerical calculations were used to model the process of shaping a square pipe from a circular tube and to model the bending process, especially when taking into account the effects of such a deformation path. The pure bending moment characteristics and the deformation of the cross-section were performed for a 25 × 25 × 2 mm square tube made of S235JR structural steel. The innovative approach for determining the parameters of cold bending square tubes pertained to considering the stress state in the preserved material in individual areas of their cross-section. The results of numerical modeling—after considering the history of deformation (i.e., the process of forming a square pipe from a pipe with a circular cross-section)—gave a satisfactory agreement with the results of experimental tests, both in terms of the degree of pipe wall deflection and the characteristics of the bending moment.



2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Antonino Recupero ◽  
Nino Spinella ◽  
Francesco Tondolo

Corrosion of steel in reinforced and prestressed concrete beams is very common for structures and infrastructures. It can drastically reduce the resisting section of rebar, modify the mechanical response of the steel rebar, and also determine cracking of the surrounding concrete because of the volume expansion effect of rust. Moreover, it heavily influences the bond between steel rebar and concrete. Few experimental tests are available in the literature, where the structural behavior of reinforced and prestressed concrete beams, in presence of corrosion of longitudinal and transversal reinforcement, is analyzed. A reduction of the bearing performance is observed with an increasing level of rebar corrosion. Indeed, a changing collapse mechanism is evidenced through the tests and may be addressed to the not obvious consequences of corrosion. In this paper, a physical model based on a consistent equilibrium and ultimate strength theory is employed in order to explain the residual capacity of corroded beams. The model is based on limit analysis, and it is able to take into account the interaction between shear, bending moment, and axial forces.



Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.



2013 ◽  
Vol 12 (1) ◽  
pp. 115-122
Author(s):  
Michał Głowacki ◽  
Marian Abramowicz ◽  
Robert Kowalski

This paper describes the analysis of high temperature influence on beams with heated tensile zone. High temperature experiments were preformed under the static load of 50 or 70% of the destructive force ensuring constant value of bending moment in the central part of the heated beam. Beams with 2 reinforcement ratios – 0.44 and 1.13% were examined. In total four series of beams, three in each series (12 elements) were used. This paper analyses the reduction of relative beam cross section stiffness depending on reinforcement temperature. Experimentally obtained stiffness values calculated in two ways (element maximal deflection and deflection measured in three points of analysed element) were compared to calculation results made according to Eurocode. The performed analysis shows that reduction of the stiffness of element based on Eurocode calculations is slightly bigger than the experimentally obtained one.



2019 ◽  
Vol 23 (7) ◽  
pp. 1290-1304
Author(s):  
Yang Yang ◽  
Ze-Yang Sun ◽  
Gang Wu ◽  
Da-Fu Cao ◽  
Zhi-Qin Zhang

This study presents a design method for hybrid fiber-reinforced-polymer-steel-reinforced concrete beams by an optimized analysis of the cross section. First, the relationships among the energy consumption, the bearing capacity, and the reinforcement ratio are analyzed; then, the parameters of the cross section are determined. Comparisons between the available theoretical and experimental results show that the designed hybrid fiber-reinforced-polymer-steel-reinforced concrete beams with a low area ratio between the fiber-reinforced polymer and the steel reinforcement could meet the required carrying capacity and exhibited high ductility.



2010 ◽  
Vol 2 (6) ◽  
pp. 5-13
Author(s):  
Mantas Atutis

The article reviews moment resistance design methods of prestressed concrete beams with fibre-reinforced polymer (FRP) reinforcement. FRP tendons exhibit linear elastic response to rupture without yielding and thus failure is expected to be brittle. The structural behaviour of beams prestressed with FRP tendons is different from beams with traditional steel reinforcement. Depending on the reinforcement ratio, the flexural behaviour of the beam can be divided into several groups. The numerical results show that depending on the nature of the element failure, moment resistance calculation results are different by using reviewed methods. It was found, that the use of non-metallic reinforcement in prestressed concrete structures is effective: moment capacity is about 5% higher than that of the beams with conventional steel reinforcement.



1914 ◽  
Vol 50 (1) ◽  
pp. 211-223
Author(s):  
Angus R. Fulton

CONCLUSIONS1. It may be taken as conclusive that the final distribution of stress at rupture point in a member subjected to an external bending moment is a rectangular one, unless where the cohesion of adjacent layers is not sufficient to withstand the shear induced by the resisting moment of the section.2. That, provided shear does not take place, the neutral axis moves always to the position which reduces the summation of the tensile and compressive stress areas, across a section, to the equilibrant of the external forces. (In the case of a beam this reduces to zero; in that of a hook, at the principal section to the suspended weight.)3. That the total resisting moment of these stresses must be equal to the external bending moment as measured to the neutral axis at rupture point, but that these balancing moments do not differ materially from those measured to an axis obtained by dividing the sectional area into tensile and compressive stress areas which are in inverse proportion to the magnitude of their respective ultimate direct stresses.The advantage of these formulæ are important. It is possible to indicate with certainty the magnitude of the load which will cause rupture in a beam or a hook provided there is known the point of application or the effective arm of the load, the cross-section of the beam or hook, and the breaking strengths of the material when subjected to the different forms of direct loading.



Sign in / Sign up

Export Citation Format

Share Document