scholarly journals Diallel analysis in white oat cultivars subjected to water stress

2011 ◽  
Vol 11 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Guilherme Ribeiro ◽  
Gustavo da Silveira ◽  
Maraisa Crestani ◽  
Rafael Nornberg ◽  
Henrique de Souza Luche ◽  
...  

The goal of this work was to determine the combining ability of three white oat parental genotypes (UPF 18, URS21 and URS 22) and to estimate the heterosis of F1 hybrids in two conditions, with and without water stress. The results indicate a large effect of the environment on the evaluated characters (cycle, leaf area, plant stature, grain yield per plant, main panicle weight and number of grains of the main panicle). The condition without stress was the most efficient for the selection of superior genotypes. Based on the general and specific combining ability, the cultivar URS 22 was shown to be indicated for cycle and stature reduction, while UPF 18 lead to increases in leaf area, main panicle weight and number of grains of the main panicle. The specific cross URS 22 x URS 21 was the best for the selection of superior genotypes.

2017 ◽  
Vol 26 (1) ◽  
pp. 31
Author(s):  
Yuni Widyastuti

<p>Selection of parents based on their combining ability is an effective approach in hybrid breeding. Four CMS and four restorer lines were crossed in line x tester mating design to obtain 16 F1 hybrids rice. The 8 parental lines and 16 hybrids rice were planted in randomized complete block design with three replications at Kuningan and Muara field station of ICRR during 2012-2013. The results revealed that mean squares for GCA were significant for number of fertile spikelet per panicle, a thousand-grains weight, and 50% days of flowering. Mean squares for SCA were significant for plant height and grain yield. Parental lines exhibited the highest GCA effects for GMJ12A (line) and CRS703 (tester) for grain yield trait and revealed good potential to be used as parents for hybrid rice. Among all the crosses, GMJ6A/CRS707 and GMJ12A/CRS707 showed the greatest positive SCA effects for grain yield and had heterosis over better parent and midparent.</p>


2018 ◽  
Vol 10 (5) ◽  
pp. 179
Author(s):  
Alexsander Rigatti ◽  
Alan J. de Pelegrin ◽  
Carine Meier ◽  
Andrei Lunkes ◽  
Luís A. Klein ◽  
...  

Grain yield is a complex quantitative trait, because its expression is associated to the large number of genes with small effect. In addition, there is interaction among different yield components and environment effect, making difficult the direct selection of genotypes. The most viable alternative for wheat breeding programs, an autogamous plant, is use artificial crosses in order to obtain superior genotypes. Hybridization after use of successive self-fertilizations results in segregating populations, which reveal the genetic variability, especially when the parents are genetically different. Therefore, it is important to know genetic relationships between crosses, which will serve as reference for decision making in the choice of combinations. Therefore, general combining ability (GCA) and specific combining ability (SCA) are used, which facilitate choice of the best parents to compose crossover block. In addition to these parameters, path analysis can be used to determine importance of primary and secondary traits and to guide indirect selection of promising genotypes by means of interest traits.


2009 ◽  
Vol 66 (2) ◽  
pp. 204-209 ◽  
Author(s):  
Leonardo Oliveira Medici ◽  
Salete Aparecida Gaziola ◽  
Vanderlei Aparecido Varisi ◽  
José Antonio Carmezini de Paula ◽  
Renato Rodrigues Ferreira ◽  
...  

Six S5 lines of maize, with differences for lysine and oil contents in grains, were used to carry out a complete series of diallelic crosses. The resulting 15 hybrids were grown in a field at two nitrogen levels (10 and 130 kg N ha-1). The general combining ability (GCA) and specific combining ability (SCA) were obtained by using the method 4, model I of Griffing for grain yield, and grain lysine and oil contents. Significant (p < 0.001) interaction was observed between GCA and N levels for grain yield, indicating the selection of different lines for each N level. This interaction was not significant for lysine content, but there were significant effects of GCA for this trait at both N levels (p < 0.1). Significant effects were not observed for GCA or SCA for oil content, however a positive correlation was observed between lysine and oil contents in the hybrids, in the lines and even in the control cultivars. The results indicate the effectiveness of selection for lysine content, irrespective of N level, in the studied non-opaque maize lines, and the possibility of achieving both high lysine and oil content in grains.


2013 ◽  
Vol 5 (1) ◽  
pp. 90-97 ◽  
Author(s):  
Srikrishna LATHA ◽  
Deepak SHARMA ◽  
Gulzar S. SANGHERA

The nature and magnitude of heterosis and combining ability was studied in 18 F1 hybrids involving three CMS lines and six testers using line × tester analysis. The analysis of variance for combining ability of all the traits showed that variances due to treatments, parents, hybrids were highly significant. The line ‘CRMS 32A’ and testers viz. ‘Super rice-8’, ‘R 1099-2569-1-1’ and ‘Jitpiti’ were identified as good general combiners. The significant differences between lines x testers interaction indicates that SCA attributed heavily in the expression of these traits and demonstrates the importance of dominance or non additive variances for all the traits. The hybrid ‘CRMS 32A’/‘R 1099-2569-1-1’ and ‘APMS 6A’/‘Super rice-8’ were promising for grain yield. The magnitude of relative heterosis, heterobeltiosis and standard heterosis were also estimated for different characters. A high degree of relative heterosis was observed for grain yield (20.45- 82.37%) in the hybrids viz., ‘CRMS 32A’/‘Super rice-8’, ‘APMS 6A’/‘Super rice-8’, ‘APMS 6A’/‘Jitpiti’ and ‘CRMS 32A’/‘R 1099-2569-1-1’. While, a higher degree of: heterobeltiosis (13.60 -68.37%) was observed for grain yield in the hybrids viz., ‘CRMS 32A’/‘Super rice-8’, ‘CRMS 32A’/‘R 1099-2569-1-1’, ‘APMS 6A’/’Super rice-8’ and ‘APMS 6A’/’Jitpiti’. A high degree of standard heterosis was observed for grain yield in the hybrid ‘CRMS 32A’/‘R 1099-2569-1-1’. The hybrid ‘CRMS 32A’/ ‘R 1099-2569-1-1’ recorded a high degree of relative heterosis (62.01%), heterobeltiosis (57.35%) and standard heterosis (15.05 and 25.51% over check hybrids, ‘Mahamaya’ and ‘Indirasona’, respectively) that can be tested on yield trials for its further testing over locations.


2015 ◽  
Vol 50 (8) ◽  
pp. 698-706
Author(s):  
Rafael Nörnberg ◽  
José Antonio Gonzalez da Silva ◽  
Henrique de Souza Luche ◽  
Elisane Weber Tessmann ◽  
Sydney Antonio Frehner Kavalco ◽  
...  

Abstract:The objective of this work was to characterize the performance of elite wheat genotypes from different Brazilian breeding programs for traits associated with grain yield and preharvest sprouting. The study was conducted in 2010 and 2011 in the municipality of Capão do Leão, in the state of Rio Grande do Sul, Brazil, in a randomized complete block design with three replicates. Thirty-three wheat genotypes were evaluated for traits related to preharvest sprouting and grain yield. The estimate of genetic distance was used to predict potential combinations for selection of plants with high grain yield and tolerance to preharvest sprouting. The combined analysis of sprouted grains and falling number shows that the TBIO Alvorada, TBIO Mestre, Frontana, Fundacep Raízes, Fundacep Cristalino, and BRS Guamirim genotypes are tolerant to preharvest sprouting. Combinations of TBIO Alvorada and TBIO Mestre with Fundacep Cristalino show high potential for recovering superior genotypes for high grain yield and tolerance to preharvest sprouting.


2017 ◽  
Vol 9 (2) ◽  
pp. 122 ◽  
Author(s):  
Sally Chikuta ◽  
Thomas Odong ◽  
Fred Kabi ◽  
Patrick Rubaihayo

Sorghum is an important food and feed source in mixed crop-livestock production systems where its dual usage is a preferred option, especially among the resource poor small-scale farmers. Attempts to improve fodder quality traits in maize have been at the expense of grain traits and vice versa, but other studies demonstrated that it was possible to select for high stem biomass without compromising the improvement of grain yields in sorghum. As a follow up to this effort, this study was undertaken to estimate the combining ability of grain and forage sorghum genotypes and determine heterosis for several traits as a criteria for improving dual purpose sorghum cultivars. Four grain and four forage sorghum cultivars were crossed to generate 23 crosses following the half diallel mating design scheme at Makerere University Agricultural Research institute Kabanyolo (MUARIK) in 2013. The crosses were evaluated at three locations in Uganda during two rainy seasons of 2014. Data were taken and analysed on leaf area, leaf-stem ratio, plant height, seed weight, grain yield, and biomass. Results indicated that the gene action for the traits under observation was controlled by both additive and non additive genetic effects. Majority of the parental lines had significant GCA estimates for all traits except line 20 for grain yield, lines 22 and 34 for plant height, line 35 for leaf-stem ratio, and line 22 for days to flowering. Significant (P ≤ 0.05) SCA estimates were prominent in most of the individual parental combinations for all traits except leaf area and leaf-stem ratio indicating the role of dominance gene action. Bakers ratio and heritability coefficients were > 52% for biomass, flowering duration and plant height indicating that genetic gains can be achieved by conventional breeding for the three traits. Heterosis in grain yield and biomass over both the mid and better parents was shown by more than half of the crosses studied. This study suggested that both inter and intra allelic interactions were involved in the expression of the traits.


2018 ◽  
Vol 69 (6) ◽  
pp. 594 ◽  
Author(s):  
Goudarz Ahmadvand ◽  
Somayeh Hajinia

Piriformospora indica is one of the cultivable root-colonising endophytic fungi of the order Sebacinales, which efficiently promote plant growth, uptake of nutrients, and resistance to biotic and abiotic stresses. The aim of this study was to evaluate the effect of P. indica on millet (Panicum miliaceum L.) under water-stress conditions. Two field experiments were carried out in a factorial arrangement at Bu-Ali Sina University of Hamedan, Iran, during 2014 and 2015. The first factor was three levels of water-deficit stress, with irrigation after 60 mm (well-watered), 90 mm (mild stress) and 120 mm (severe stress) evaporation from pan class A. The second factor was two levels of fungus P. indica: inoculated and uninoculated. Results showed that water-deficit stress significantly decreased grain yield and yield components. Colonisation by P. indica significantly increased number of panicles per plant, number of grains per panicle and 1000-grain weight, regardless of water supply. Inoculation with P. indica increased grain yield by 11.4% (year 1) and 19.72% (year 2) in well-watered conditions and by 35.34% (year 1) and 32.59% (year 2) under drought stress, compared with uninoculated plants. Maximum flag-leaf area (21.71 cm2) was achieved with well-watered conditions. Severe water stress decreased flag-leaf area by 53.36%. Flag-leaf area was increased by 18.64% by fungus inoculation compared with the uninoculated control. Under drought conditions, inoculation with P. indica increased plant height by 27.07% and panicle length by 9.61%. Severe water stress caused a significant decrease in grain phosphorus concentration, by 42.42%, compared with the well-watered treatment. By contrast, grain nitrogen and protein contents were increased about 30.23% and 30.18%, respectively, with severe water stress. Inoculation with P. indica increased grain phosphorus by 24.22%, nitrogen by 7.47% and protein content by 7.54% compared with control. Water stress reduced leaf chlorophyll and carotenoid concentrations, whereas P. indica inoculation enhanced chlorophyll concentrations by 27.18% under severe water stress. The results indicated the positive effect of P. indica on yield and physiological traits of millet in both well-watered and water-stressed conditions.


2018 ◽  
Vol 10 (12) ◽  
pp. 92 ◽  
Author(s):  
M. E. Yuga ◽  
J. M. Kimani ◽  
P. M. Kimani ◽  
M. F. Olubayo ◽  
J. W. Muthomi ◽  
...  

Understanding genetic variability and mode of gene action for agronomic and yield related traits is important in formulation of effective rice breeding program for genetic enhancement of grain yield. Combining ability analysis and heterosis was conducted to identify yield associated traits from nine male indicas and three female japonicas, together with their 27 F1 hybrids. Four parental lines, including Basmati 370, Basmati 217, K2-54 and Komboka showed good general combining ability in days to 50% flowering, days to maturity, number of tillers plant-1, number of spikelet&rsquo;s panicle-1, number of panicles plant-1, number of filled grains panicle-1, and grain yield. While the combine K2-9 &times; Komboka, K2-9 &times; Basmati 370, K2-54 &times; Dourado Precoce and K2-54 &times; Basmati 217 showed specific good for grain yield. The hybrids K2-9 &times; Basmati 370, K2-8 &times; Basmati 217, K2-54 &times; Basmati 217 and K2-9 &times; Komboka showed 20% excess in standard check variety, suggesting that they could be good breeding donors.


2020 ◽  
Vol 24 (6) ◽  
pp. 549-556
Author(s):  
O. P. Kibalnik ◽  
L. A. Elkonin

Investigation of the effect of the cytoplasm on the combining ability (CA) of lines with cytoplasmic male sterility (CMS) is of considerable interest in terms of understanding the genetic functions of the cytoplasm and for practical purposes to create hybrids with improved economically valuable traits. In order to investigate the effect of different types of sterile cytoplasm (A3, A4, 9E) on CA in sorghum, we studied the manifestation of a number of biological and agronomic traits in 54 F1 hybrid combinations obtained using iso-nuclear CMS lines with the nuclear genome of the line Zheltozernoye 10, differing only in the types of sterile cytoplasm (A3, A4 and 9E). Eighteen varieties and lines of grain sorghum developed at the Russian Research and Project-technological Institute of Sorghum and Maize were used as paternal parents. The CA was determined by the topcross method. F1 hybrids and their parents were grown in 2015–2017 in conditions of insufficient (2015–2016: HTC (hydro-thermal coefficient) = 0.32–0.66), or good water availability conditions (2017: HTC = 1.00). On average, for three years of testing, a positive effect of the 9E cytoplasm on the general combining ability (GCA) (0.63) and negative effects of the A3 and A4 cytoplasms (–0.32 and –0.31) for the inflorescence length were noted. In dry seasons, significant positive effects of the 9E cytoplasm on GCA for the length of the largest leaf, and positive effects of the A3 cytoplasm on GCA for the plant height, and negative effects of the A4 cytoplasm on GCA for these traits were observed. No differences were observed during the wet season. The type of CMS did not affect the GCA for the width of the largest leaf and grain yield. The dispersion of specific combining ability (SCA) in the dry seasons was significant for the following traits: leaf length, plant height, panicle length and width, and grain yield, the 9E cytoplasm had the highest SCA dispersion, whereas the A4 cytoplasm had the smallest one. The data obtained indicate that different types of sterile cytoplasm of sorghum make a different contribution to CA under conditions of drought stress.


Sign in / Sign up

Export Citation Format

Share Document