Phylogenetic Classification of Subtribe Castillejinae (Orobanchaceae)

2009 ◽  
Vol 34 (1) ◽  
pp. 182-197 ◽  
Author(s):  
David C. Tank ◽  
J. Mark Egger ◽  
Richard G. Olmstead

Recent molecular systematic research has indicated the need for a revised circumscription of generic boundaries in subtribe Castillejinae (tribe Pedicularideae, Orobanchaceae). Based on a well-resolved and well-supported phylogenetic hypothesis, we present a formal reclassification of the major lineages comprising the Castillejinae. Prior to this treatment, subtribe Castillejinae included Castilleja (ca. 190 spp.), Cordylanthus (18 spp.), Orthocarpus (9 spp.), Triphysaria (5 spp.), and the monotypic genera Clevelandia and Ophiocephalus. In the classification presented here, Orthocarpus and Triphysaria retain their current circumscriptions, Castilleja is expanded to include Clevelandia and Ophiocephalus, and Cordylanthus is split into three genera; a key to the genera as they are recognized here is provided. Two new combinations, Castilleja beldingii and Castilleja ophiocephala, are proposed within the expanded Castilleja. The concept of Cordylanthus is restricted to the 13 species formerly recognized as subg. Cordylanthus, while subg. Dicranostegia and subg. Hemistegia are elevated to genus level (Dicranostegia and Chloropyron, respectively). We resurrect the generic name Chloropyron for the halophytes previously recognized as subg. Hemistegia. Five new combinations are proposed for Chloropyron (Chloropyron maritimum subsp. canescens, Chloropyron maritimum subsp. palustre, Chloropyron molle subsp. hispidum, Chloropyron palmatum, and Chloropyron tecopense). In addition to the formal classification, we provide phylogenetic clade definitions for Castillejinae, each of the genera, and two additional clades that are not assigned formal ranks. Morphological characteristics used to recognize traditional groups are evaluated, and synapomorphies are discussed. Finally, the current infrageneric classifications for Castilleja and Cordylanthus are evaluated in light of the recent molecular phylogenetic analyses.

2020 ◽  
Vol 67 (2) ◽  
pp. 151-182
Author(s):  
Kipling Will

Bayesian and parsimony phylogenetic analyses of combined and partitioned datasets of molecular (partial sequences of 28S, wg, COI, and CAD) and morphological (51 characters of adults) data for exemplar taxa of five outgroup and 76 ingroup abacetine carabids resulted in a monophyletic Loxandrina Erwin & Sims, 1984 that is split into Australian and American clades. The genus Loxandrus LeConte, 1853 as previously delimited is not monophyletic relative to numerous genus-level taxa in Abacetini Chaudoir, 1873 and is restricted to a subgenus of North American species. A reclassification and nomenclatural changes for the subtribe that are consistent with the phylogeny are provided. Three genera are removed from Loxandrina: Aulacopodus Britton, 1940 moved to Pterostichini Bonelli, 1810; Cosmodiscus Sloane, 1907 and Tiferonia Darlington, 1962 moved to Abacetina. Based on the phylogenetic relationships and nomenclatural priority only four genera are recognized in Loxandrina: Cerabilia Laporte, 1867, Zeodera Laporte, 1867, Pediomorphus Chaudoir, 1878, and Oxycrepis Reiche, 1843. All other previously recognized genera are treated as subgenera. The classification change created eight secondary homonyms that are resolved by the proposal of the following: Oxycrepis gebi, replacement name for O. balli (Straneo, 1993); O. amatona, replacement name for O. matoana (Straneo, 1993); O. xiproma, replacement name for O. proxima (Straneo, 1993); O. rasutulis, replacement name for O. suturalis (Straneo, 1993); O. laevinota, replacement name for O. laevicollis (Bates, 1871); O. arvulap, replacement name for O. parvula (Straneo, 1951); O. noaffine, replacement name for O. affinis (Straneo, 1991); O. alutona, replacement name for O. notula (Tschitschérine, 1901). An overview of the morphological characteristics and diagnostic features of Loxandrina taxa is provided. A key and habitus images are provided for identification of genera and subgenera. The possible historical biogeography of the group is discussed in light of their phylogenetic relationships and past geological events.


Phytotaxa ◽  
2014 ◽  
Vol 166 (1) ◽  
pp. 33 ◽  
Author(s):  
ISABEL LARRIDON ◽  
KENNETH BAUTERS ◽  
MARC REYNDERS ◽  
WIM HUYGH ◽  
PAUL GOETGHEBEUR

The sedge genera Alinula, Ascolepis, Kyllinga, Lipocarpha, Pycreus, Queenslandiella, Remirea, Sphaerocyperus and Volkiella (Cyperaceae) were recognised at generic level because they possess specialised inflorescence and/or flower characters. However, recent molecular phylogenetic analyses show that these genera are all nested in a paraphyletic Cyperus s.s. and therefore should be viewed as part of a broadly circumscribed genus Cyperus. For all species of Alinula and for the single species of Queenslandiella, Remirea and Sphaerocyperus, Cyperus names were already published by other authors. For the species of Lipocarpha and Volkiella, Cyperus names and a new sectional classification are published in a separate paper including a detailed molecular phylogenetic hypothesis for these taxa. Based on a study of herbarium specimens and literature, in this paper, twenty species of Ascolepis, seventeen species of Kyllinga, and six species of Pycreus, which do not yet have a validly published and legitimate name in Cyperus, are formally included into Cyperus as new combinations or new names. Notes on the synonymy of an African Pycreus species are also included.


2015 ◽  
Vol 28 (3) ◽  
pp. 111 ◽  
Author(s):  
Michael J. Bayly ◽  
Marco F. Duretto ◽  
Gareth D. Holmes ◽  
Paul I. Forster ◽  
David J. Cantrill ◽  
...  

As currently circumscribed, Boronia (Rutaceae) is a large Australian genus of 148 species distributed in all states and mainland territories, and Boronella is confined to New Caledonia and contains ~four species. We present molecular phylogenetic analyses of these genera, based on chloroplast (trnL–trnF) and nuclear (ITS, ETS) DNA sequences, to assess their relationships and infrageneric classification. Analyses strongly support the monophyly of a Boronia+Boronella clade and that Boronella is nested within Boronia. They also support the monophyly of Boronella and Boronia sections Algidae, Valvatae and Cyanothamnus, and ser. Pedunculatae (sect. Boronia), but resolve sect. Boronia and ser. Boronia as polyphyletic. On the basis of these results, we propose a new classification wherein Boronella is transferred to Boronia and recognised at the rank of section, and a new name and two new combinations in Boronia are provided for the following three species: Boronia hartleyi Duretto & Bayly, Boronia pancheri (Baill.) Duretto & Bayly and Boronia parvifolia (Baker f.) Duretto & Bayly. A revised circumscription is presented for Boronia sect. Boronia, and Pedunculatae is elevated from a series to a section. The relationships and classification of some taxa require further clarification, either because of limited taxon sampling, or because some nodes in phylogenetic analyses are poorly resolved or supported.


Author(s):  
Timothy L Collins ◽  
Jeremy J Bruhl ◽  
Alexander N Schmidt-Lebuhn ◽  
Ian R H Telford ◽  
Rose L Andrew

Abstract Golden everlasting paper daisies (Xerochrysum, Gnaphalieae, Asteraceae) were some of the earliest Australian native plants to be cultivated in Europe. Reputedly a favourite of Napoléon Bonaparte and Empress Joséphine, X. bracteatum is thought to have been introduced to the island of St Helena in the South Atlantic during Napoléon’s exile there. Colourful cultivars were developed in the 1850s, and there is a widely held view that these were produced by crossing Xerochrysum with African or Asian Helichrysum spp. Recent molecular phylogenetic analyses and subtribal classification of Gnaphalieae cast doubt on this idea. Using single-nucleotide polymorphism (SNP) data, we looked for evidence of gene flow between modern cultivars, naturalized paper daisies from St Helena and four Xerochrysum spp. recorded in Europe in the 1800s. There was strong support for gene flow between cultivars and X. macranthum. Paper daisies from St Helena were genotypically congruent with X. bracteatum and showed no indications of ancestry from other species or from the cultivars, consistent with the continuous occurrence of naturalized paper daisies introduced by Joséphine and Napoléon. We also present new evidence for the origin of colourful Xerochrysum cultivars and hybridization of congeners in Europe from Australian collections.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1531
Author(s):  
Xu Lu ◽  
Haisheng Yuan

Species in the genus Tomentella are distributed throughout the temperate and tropical regions worldwide, but few studies associated with the taxonomy and phylogeny of this genus had been reported from Northwest China. In this paper, molecular phylogenetic analyses of the nuclear ribosomal ITS (internal transcribed spacer: ITS1-5.8S-ITS2) and LSU (large subunit: 28S) sequences combined with morphological characteristics identified three new species from Xinjiang Autonomous Region in Northwest China, which were named T. aurantispora, T. kanasensis, and T. schrenkiana. Similar macromorphological and anatomical characteristics are shared by these new species: arachnoid basidiocarps; byssoid sterile margins; utriform basidia with a clamp connection at the base; the absence of rhizomorphs and cystidia; and slightly thick-walled, subglobose to globose basidiospores. Among these new species, the color of the hymenophoral surface, the size of the basidiospores, and some other features can be used for species delimitation. The new species and closely related species in the phylogenetic tree were discussed, and a key to the identified species of Tomentella from China was provided.


ZooKeys ◽  
2020 ◽  
Vol 996 ◽  
pp. 37-58
Author(s):  
Pei Wang ◽  
Mei-Ling Hu ◽  
Jun-Hong Lin ◽  
Hai-Fang Yang ◽  
Xiao-Jing Li ◽  
...  

In this study, four new dextral camaenid from China are reported, based on shell morphology, reproductive system anatomy, and molecular phylogenetic analyses: Camaena funingensis Zhou, Wang & Lin, sp. nov., Camaena gaolongensis Zhou, Wang & Lin, sp. nov., Camaena maguanensis Zhou, Wang & Hu, sp. nov., and Camaena yulinensis Zhou, Wang & Hu, sp. nov. Detailed descriptions of the morphological characteristics including shells and genitalia, DNA sequences, and living environments of the four new species are provided, with further comparisons with congeners.


2016 ◽  
Vol 47 (1) ◽  
pp. 53-82 ◽  
Author(s):  
Werner P. Strümpher ◽  
Martin H. Villet ◽  
Catherine L. Sole ◽  
Clarke H. Scholtz

Extant genera and subgenera of the Trogidae (Coleoptera: Scarabaeoidea) are reviewed. Contemporary classifications of this family have been based exclusively on morphological characters. The first molecular phylogeny for the family recently provided strong support for the relationships between morphologically defined genera and subgenera. On the basis of morphological, molecular and biogeographical evidence, certain taxonomic changes to the genus-level classification of the family are now proposed. The family is confirmed as consisting of two subfamilies, Omorginae Nikolajev and Troginae MacLeay, the former with two genera,OmorgusErichson andPolynoncusBurmeister, and the latter with two genera,TroxFabricius andPhoberusMacLeaystat. rev.Phoberusis restored to generic rank to include all Afrotropical (including Madagascan endemic) species;Afromorgusis confirmed at subgeneric rank within the genusOmorgus; and the monotypic Madagascan genusMadagatroxsyn. n.is synonymised withPhoberus.The current synonymies ofPseudotroxRobinson (withTrox),ChesasBurmeister,LagopelusBurmeister andMegalotroxPreudhomme de Borre (all withOmorgus) are all accepted to avoid creating speculative synonyms before definitive phylogenetic evidence is available. New combinations resulting from restoringPhoberusto a monophyletic genus are listed in Appendix A.


Phytotaxa ◽  
2021 ◽  
Vol 500 (1) ◽  
pp. 1-10
Author(s):  
MENG-LE XIE ◽  
TIE-ZHENG WEI ◽  
BÁLINT DIMA ◽  
YONG-PING FU ◽  
RUI-QING JI ◽  
...  

This study presents one telamonioid species new to science based on morphological characteristics and molecular phylogenetic analyses. Cortinarius khinganensis was collected from the Greater Khingan Mountains, Northeast China and it is characterized by hygrophanous, vivid brownish red and striate pileus, white universal veil, and subglobose spores. According to phylogenetic analyses results, C. khinganensis belongs to the section Illumini, which is a lineage distantly related from subgenus Telamonia sensu stricto. Detailed descriptions of the new species and the comparisons with morphologically similar species are provided. The phylogenetic relationships within the section Illumini are also discussed.


Zootaxa ◽  
2012 ◽  
Vol 3235 (1) ◽  
pp. 1 ◽  
Author(s):  
SHAO YING LIU ◽  
ZHI YU SUN ◽  
YANG LIU ◽  
HAO WANG ◽  
PENG GUO ◽  
...  

During a faunal survey in southern Xizang, we collected 27 specimens of voles that could not be identified as any knownspecies in the Arvicolinae. These specimens shared the following morphological characteristics, not corresponding withany other arvicoline species: the first lower molar possessed five closed triangles, the third upper molar exhibited eitherfour or three inner angles, and the tails of all specimens measured 30% of the body length. Their proximal baculum of theglans was very sturdy and trumpet-shaped, the distal baculum was tongue-like and sturdy, and the lateral bacula were veryshort. Molecular phylogenetic analyses based on nucleotide sequences of the mitochondrial cytochrome b (cyt b) geneclustered these specimens as a distinct lineage within the genus Neodon. According to the morphological and moleculardata, we described them as a new species, Neodon linzhiensis. Our phylogenetic analysis strongly supported that Lasio-podomys fuscus, Phaiomys leucurus, Neodon sikimensis, N. irene and the new species formed a monophyletic group, notincluding N. juldaschi. We suggested that L. fuscus and P. leucurus should be transferred to Neodon and that N. juldaschishould be removed from this genus. Following our new delineation of Neodon, we proposed a redefinition of the morphological diagnostic characters of the genus.


Phytotaxa ◽  
2017 ◽  
Vol 319 (1) ◽  
pp. 84 ◽  
Author(s):  
XUDONG LIU ◽  
HUAN ZHU ◽  
BENWEN LIU ◽  
GUOXIANG LIU ◽  
ZHENGYU HU

The genus Nephrocytium Nägeli is a common member of phytoplankton communities that has a distinctive morphology. Its taxonomic position is traditionally considered to be within the family Oocystaceae (Trebouxiophyceae). However, research on its ultrastructure is rare, and the phylogenetic position has not yet been determined. In this study, two strains of Nephrocytium, N. agardhianum Nägeli and N. limneticum (G.M.Smith) G.M.Smith, were identified and successfully cultured in the laboratory. Morphological inspection by light and electron microscopy and molecular phylogenetic analyses were performed to explore the taxonomic position. Ultrastructure implied a likely irregular network of dense and fine ribs on the surface of the daughter cell wall that resembled that of the genus Chromochloris Kol & Chodat (Chromochloridaceae). Phylogenetic analyses revealed that Nephrocytium formed an independent lineage in the order Sphaeropleales (Chlorophyceae) with high support values and a close phylogenetic relationship with Chromochloris. Based on combined morphological, ultrastructural and phylogenetic data, we propose a re-classification of Nephrocytium into Sphaeropleales, sharing a close relationship with Chromochloris.


Sign in / Sign up

Export Citation Format

Share Document