scholarly journals Efficient Gaussian Process Classification Using Pólya-Gamma Data Augmentation

Author(s):  
Florian Wenzel ◽  
Théo Galy-Fajou ◽  
Christan Donner ◽  
Marius Kloft ◽  
Manfred Opper

We propose a scalable stochastic variational approach to GP classification building on Pólya-Gamma data augmentation and inducing points. Unlike former approaches, we obtain closed-form updates based on natural gradients that lead to efficient optimization. We evaluate the algorithm on real-world datasets containing up to 11 million data points and demonstrate that it is up to two orders of magnitude faster than the state-of-the-art while being competitive in terms of prediction performance.

2021 ◽  
Vol 7 ◽  
pp. e604
Author(s):  
Peter Gnip ◽  
Liberios Vokorokos ◽  
Peter Drotár

Challenges posed by imbalanced data are encountered in many real-world applications. One of the possible approaches to improve the classifier performance on imbalanced data is oversampling. In this paper, we propose the new selective oversampling approach (SOA) that first isolates the most representative samples from minority classes by using an outlier detection technique and then utilizes these samples for synthetic oversampling. We show that the proposed approach improves the performance of two state-of-the-art oversampling methods, namely, the synthetic minority oversampling technique and adaptive synthetic sampling. The prediction performance is evaluated on four synthetic datasets and four real-world datasets, and the proposed SOA methods always achieved the same or better performance than other considered existing oversampling methods.


Author(s):  
Shoujin Wang ◽  
Liang Hu ◽  
Yan Wang ◽  
Quan Z. Sheng ◽  
Mehmet Orgun ◽  
...  

User purchase behaviours are complex and dynamic, which are usually observed as multiple choice actions across a sequence of shopping baskets. Most of the existing next-basket prediction approaches model user actions as homogeneous sequence data without considering complex and heterogeneous user intentions, impeding deep under-standing of user behaviours from the perspective of human inside drivers and thus reducing the prediction performance. Psychological theories have indicated that user actions are essentially driven by certain underlying intentions (e.g., diet and entertainment). Moreover, different intentions may influence each other while different choices usually have different utilities to accomplish an intention. Inspired by such psychological insights, we formalize the next-basket prediction as an Intention Recognition, Modelling and Accomplishing problem and further design the Intention2Basket (Int2Ba in short) model. In Int2Ba, an Intention Recognizer, a Coupled Intention Chain Net, and a Dynamic Basket Planner are specifically designed to respectively recognize, model and accomplish the heterogeneous intentions behind a sequence of baskets to better plan the next-basket. Extensive experiments on real-world datasets show the superiority of Int2Ba over the state-of-the-art approaches.


Author(s):  
Cong Fei ◽  
Bin Wang ◽  
Yuzheng Zhuang ◽  
Zongzhang Zhang ◽  
Jianye Hao ◽  
...  

Generative adversarial imitation learning (GAIL) has shown promising results by taking advantage of generative adversarial nets, especially in the field of robot learning. However, the requirement of isolated single modal demonstrations limits the scalability of the approach to real world scenarios such as autonomous vehicles' demand for a proper understanding of human drivers' behavior. In this paper, we propose a novel multi-modal GAIL framework, named Triple-GAIL, that is able to learn skill selection and imitation jointly from both expert demonstrations and continuously generated experiences with data augmentation purpose by introducing an auxiliary selector. We provide theoretical guarantees on the convergence to optima for both of the generator and the selector respectively. Experiments on real driver trajectories and real-time strategy game datasets demonstrate that Triple-GAIL can better fit multi-modal behaviors close to the demonstrators and outperforms state-of-the-art methods.


2020 ◽  
Vol 34 (01) ◽  
pp. 19-26 ◽  
Author(s):  
Chong Chen ◽  
Min Zhang ◽  
Yongfeng Zhang ◽  
Weizhi Ma ◽  
Yiqun Liu ◽  
...  

Recent studies on recommendation have largely focused on exploring state-of-the-art neural networks to improve the expressiveness of models, while typically apply the Negative Sampling (NS) strategy for efficient learning. Despite effectiveness, two important issues have not been well-considered in existing methods: 1) NS suffers from dramatic fluctuation, making sampling-based methods difficult to achieve the optimal ranking performance in practical applications; 2) although heterogeneous feedback (e.g., view, click, and purchase) is widespread in many online systems, most existing methods leverage only one primary type of user feedback such as purchase. In this work, we propose a novel non-sampling transfer learning solution, named Efficient Heterogeneous Collaborative Filtering (EHCF) for Top-N recommendation. It can not only model fine-grained user-item relations, but also efficiently learn model parameters from the whole heterogeneous data (including all unlabeled data) with a rather low time complexity. Extensive experiments on three real-world datasets show that EHCF significantly outperforms state-of-the-art recommendation methods in both traditional (single-behavior) and heterogeneous scenarios. Moreover, EHCF shows significant improvements in training efficiency, making it more applicable to real-world large-scale systems. Our implementation has been released 1 to facilitate further developments on efficient whole-data based neural methods.


Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


Author(s):  
Chengzhen Fu ◽  
Yan Zhang

Query-document semantic interactions are essential for the success of many cloze-style question answering models. Recently, researchers have proposed several attention-based methods to predict the answer by focusing on appropriate subparts of the context document. In this paper, we design a novel module to produce the query-aware context vector, named Multi-Space based Context Fusion (MSCF), with the following considerations: (1) interactions are applied across multiple latent semantic spaces; (2) attention is measured at bit level, not at token level. Moreover, we extend MSCF to the multi-hop architecture. This unified model is called Enhanced Attentive Reader (EA Reader). During the iterative inference process, the reader is equipped with a novel memory update rule and maintains the understanding of documents through read, update and write operations. We conduct extensive experiments on four real-world datasets. Our results demonstrate that EA Reader outperforms state-of-the-art models.


Author(s):  
Yu Zhang ◽  
Yuan Jiang

Linear discriminant analysis (LDA) is a widely used supervised dimensionality reduction technique. Even though the LDA method has many real-world applications, it has some limitations such as the single-modal problem that each class follows a normal distribution. To solve this problem, we propose a method called multimodal linear discriminant analysis (MLDA). By generalizing the between-class and within-class scatter matrices, the MLDA model can allow each data point to have its own class mean which is called the instance-specific class mean. Then in each class, data points which share the same or similar instance-specific class means are considered to form one cluster or modal. In order to learn the instance-specific class means, we use the ratio of the proposed generalized between-class scatter measure over the proposed generalized within-class scatter measure, which encourages the class separability, as a criterion. The observation that each class will have a limited number of clusters inspires us to use a structural sparse regularizor to control the number of unique instance-specific class means in each class. Experiments on both synthetic and real-world datasets demonstrate the effectiveness of the proposed MLDA method.


Author(s):  
Gaode Chen ◽  
Xinghua Zhang ◽  
Yanyan Zhao ◽  
Cong Xue ◽  
Ji Xiang

Sequential recommendation systems alleviate the problem of information overload, and have attracted increasing attention in the literature. Most prior works usually obtain an overall representation based on the user’s behavior sequence, which can not sufficiently reflect the multiple interests of the user. To this end, we propose a novel method called PIMI to mitigate this issue. PIMI can model the user’s multi-interest representation effectively by considering both the periodicity and interactivity in the item sequence. Specifically, we design a periodicity-aware module to utilize the time interval information between user’s behaviors. Meanwhile, an ingenious graph is proposed to enhance the interactivity between items in user’s behavior sequence, which can capture both global and local item features. Finally, a multi-interest extraction module is applied to describe user’s multiple interests based on the obtained item representation. Extensive experiments on two real-world datasets Amazon and Taobao show that PIMI outperforms state-of-the-art methods consistently.


Author(s):  
Lei Feng ◽  
Bo An

Partial label learning deals with the problem where each training instance is assigned a set of candidate labels, only one of which is correct. This paper provides the first attempt to leverage the idea of self-training for dealing with partially labeled examples. Specifically, we propose a unified formulation with proper constraints to train the desired model and perform pseudo-labeling jointly. For pseudo-labeling, unlike traditional self-training that manually differentiates the ground-truth label with enough high confidence, we introduce the maximum infinity norm regularization on the modeling outputs to automatically achieve this consideratum, which results in a convex-concave optimization problem. We show that optimizing this convex-concave problem is equivalent to solving a set of quadratic programming (QP) problems. By proposing an upper-bound surrogate objective function, we turn to solving only one QP problem for improving the optimization efficiency. Extensive experiments on synthesized and real-world datasets demonstrate that the proposed approach significantly outperforms the state-of-the-art partial label learning approaches.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1149
Author(s):  
Thapana Boonchoo ◽  
Xiang Ao ◽  
Qing He

Motivated by the proliferation of trajectory data produced by advanced GPS-enabled devices, trajectory is gaining in complexity and beginning to embroil additional attributes beyond simply the coordinates. As a consequence, this creates the potential to define the similarity between two attribute-aware trajectories. However, most existing trajectory similarity approaches focus only on location based proximities and fail to capture the semantic similarities encompassed by these additional asymmetric attributes (aspects) of trajectories. In this paper, we propose multi-aspect embedding for attribute-aware trajectories (MAEAT), a representation learning approach for trajectories that simultaneously models the similarities according to their multiple aspects. MAEAT is built upon a sentence embedding algorithm and directly learns whole trajectory embedding via predicting the context aspect tokens when given a trajectory. Two kinds of token generation methods are proposed to extract multiple aspects from the raw trajectories, and a regularization is devised to control the importance among aspects. Extensive experiments on the benchmark and real-world datasets show the effectiveness and efficiency of the proposed MAEAT compared to the state-of-the-art and baseline methods. The results of MAEAT can well support representative downstream trajectory mining and management tasks, and the algorithm outperforms other compared methods in execution time by at least two orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document