scholarly journals Dialog State Tracking with Reinforced Data Augmentation

2020 ◽  
Vol 34 (05) ◽  
pp. 9474-9481
Author(s):  
Yichun Yin ◽  
Lifeng Shang ◽  
Xin Jiang ◽  
Xiao Chen ◽  
Qun Liu

Neural dialog state trackers are generally limited due to the lack of quantity and diversity of annotated training data. In this paper, we address this difficulty by proposing a reinforcement learning (RL) based framework for data augmentation that can generate high-quality data to improve the neural state tracker. Specifically, we introduce a novel contextual bandit generator to learn fine-grained augmentation policies that can generate new effective instances by choosing suitable replacements for specific context. Moreover, by alternately learning between the generator and the state tracker, we can keep refining the generative policies to generate more high-quality training data for neural state tracker. Experimental results on the WoZ and MultiWoZ (restaurant) datasets demonstrate that the proposed framework significantly improves the performance over the state-of-the-art models, especially with limited training data.

1997 ◽  
Vol 181 ◽  
pp. 15-29
Author(s):  
Pere L. Pallé

The new results obtained from the observation of solar oscillations over the past decade, have a direct impact on our knowledge of the Sun's interior. As a consequence, a great interest in helioseismology has arisen and is reflected in the development of new observational projects as well as new analyse and inversion techniques. In this review we will describe the present ground-based observational programmes, which, unlike the space ones, are mostly designed to produce high quality data over very long time spans (up to solar cycle time scales). The characteristics of the various observational programmes, single-site and network, will be described together with their performances, the main results obtained up to now, and some other logistical aspects.


Author(s):  
Aiming Zhang ◽  
Lei Su ◽  
Yin Zhang ◽  
Yunfa Fu ◽  
Liping Wu ◽  
...  

AbstractEEG-based emotion recognition has attracted substantial attention from researchers due to its extensive application prospects, and substantial progress has been made in feature extraction and classification modelling from EEG data. However, insufficient high-quality training data are available for building EEG-based emotion recognition models via machine learning or deep learning methods. The artificial generation of high-quality data is an effective approach for overcoming this problem. In this paper, a multi-generator conditional Wasserstein GAN method is proposed for the generation of high-quality artificial that covers a more comprehensive distribution of real data through the use of various generators. Experimental results demonstrate that the artificial data that are generated by the proposed model can effectively improve the performance of emotion classification models that are based on EEG.


Author(s):  
Mary Kay Gugerty ◽  
Dean Karlan

Without high-quality data, even the best-designed monitoring and evaluation systems will collapse. Chapter 7 introduces some the basics of collecting high-quality data and discusses how to address challenges that frequently arise. High-quality data must be clearly defined and have an indicator that validly and reliably measures the intended concept. The chapter then explains how to avoid common biases and measurement errors like anchoring, social desirability bias, the experimenter demand effect, unclear wording, long recall periods, and translation context. It then guides organizations on how to find indicators, test data collection instruments, manage surveys, and train staff appropriately for data collection and entry.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4486
Author(s):  
Niall O’Mahony ◽  
Sean Campbell ◽  
Lenka Krpalkova ◽  
Anderson Carvalho ◽  
Joseph Walsh ◽  
...  

Fine-grained change detection in sensor data is very challenging for artificial intelligence though it is critically important in practice. It is the process of identifying differences in the state of an object or phenomenon where the differences are class-specific and are difficult to generalise. As a result, many recent technologies that leverage big data and deep learning struggle with this task. This review focuses on the state-of-the-art methods, applications, and challenges of representation learning for fine-grained change detection. Our research focuses on methods of harnessing the latent metric space of representation learning techniques as an interim output for hybrid human-machine intelligence. We review methods for transforming and projecting embedding space such that significant changes can be communicated more effectively and a more comprehensive interpretation of underlying relationships in sensor data is facilitated. We conduct this research in our work towards developing a method for aligning the axes of latent embedding space with meaningful real-world metrics so that the reasoning behind the detection of change in relation to past observations may be revealed and adjusted. This is an important topic in many fields concerned with producing more meaningful and explainable outputs from deep learning and also for providing means for knowledge injection and model calibration in order to maintain user confidence.


Author(s):  
Sebastian Hoppe Nesgaard Jensen ◽  
Mads Emil Brix Doest ◽  
Henrik Aanæs ◽  
Alessio Del Bue

AbstractNon-rigid structure from motion (nrsfm), is a long standing and central problem in computer vision and its solution is necessary for obtaining 3D information from multiple images when the scene is dynamic. A main issue regarding the further development of this important computer vision topic, is the lack of high quality data sets. We here address this issue by presenting a data set created for this purpose, which is made publicly available, and considerably larger than the previous state of the art. To validate the applicability of this data set, and provide an investigation into the state of the art of nrsfm, including potential directions forward, we here present a benchmark and a scrupulous evaluation using this data set. This benchmark evaluates 18 different methods with available code that reasonably spans the state of the art in sparse nrsfm. This new public data set and evaluation protocol will provide benchmark tools for further development in this challenging field.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yikui Zhai ◽  
He Cao ◽  
Wenbo Deng ◽  
Junying Gan ◽  
Vincenzo Piuri ◽  
...  

Because of the lack of discriminative face representations and scarcity of labeled training data, facial beauty prediction (FBP), which aims at assessing facial attractiveness automatically, has become a challenging pattern recognition problem. Inspired by recent promising work on fine-grained image classification using the multiscale architecture to extend the diversity of deep features, BeautyNet for unconstrained facial beauty prediction is proposed in this paper. Firstly, a multiscale network is adopted to improve the discriminative of face features. Secondly, to alleviate the computational burden of the multiscale architecture, MFM (max-feature-map) is utilized as an activation function which can not only lighten the network and speed network convergence but also benefit the performance. Finally, transfer learning strategy is introduced here to mitigate the overfitting phenomenon which is caused by the scarcity of labeled facial beauty samples and improves the proposed BeautyNet’s performance. Extensive experiments performed on LSFBD demonstrate that the proposed scheme outperforms the state-of-the-art methods, which can achieve 67.48% classification accuracy.


2019 ◽  
Vol 14 (3) ◽  
pp. 338-366
Author(s):  
Kashif Imran ◽  
Evelyn S. Devadason ◽  
Cheong Kee Cheok

This article analyzes the overall and type of developmental impacts of remittances for migrant-sending households (HHs) in districts of Punjab, Pakistan. For this purpose, an HH-based human development index is constructed based on the dimensions of education, health and housing, with a view to enrich insights into interactions between remittances and HH development. Using high-quality data from a HH micro-survey for Punjab, the study finds that most migrant-sending HHs are better off than the HHs without this stream of income. More importantly, migrant HHs have significantly higher development in terms of housing in most districts of Punjab relative to non-migrant HHs. Thus, the government would need policy interventions focusing on housing to address inequalities in human development at the district-HH level, and subsequently balance its current focus on the provision of education and health.


2017 ◽  
Vol 47 (1) ◽  
pp. 46-55 ◽  
Author(s):  
S Aqif Mukhtar ◽  
Debbie A Smith ◽  
Maureen A Phillips ◽  
Maire C Kelly ◽  
Renate R Zilkens ◽  
...  

Background: The Sexual Assault Resource Center (SARC) in Perth, Western Australia provides free 24-hour medical, forensic, and counseling services to persons aged over 13 years following sexual assault. Objective: The aim of this research was to design a data management system that maintains accurate quality information on all sexual assault cases referred to SARC, facilitating audit and peer-reviewed research. Methods: The work to develop SARC Medical Services Clinical Information System (SARC-MSCIS) took place during 2007–2009 as a collaboration between SARC and Curtin University, Perth, Western Australia. Patient demographics, assault details, including injury documentation, and counseling sessions were identified as core data sections. A user authentication system was set up for data security. Data quality checks were incorporated to ensure high-quality data. Results: An SARC-MSCIS was developed containing three core data sections having 427 data elements to capture patient’s data. Development of the SARC-MSCIS has resulted in comprehensive capacity to support sexual assault research. Four additional projects are underway to explore both the public health and criminal justice considerations in responding to sexual violence. The data showed that 1,933 sexual assault episodes had occurred among 1881 patients between January 1, 2009 and December 31, 2015. Sexual assault patients knew the assailant as a friend, carer, acquaintance, relative, partner, or ex-partner in 70% of cases, with 16% assailants being a stranger to the patient. Conclusion: This project has resulted in the development of a high-quality data management system to maintain information for medical and forensic services offered by SARC. This system has also proven to be a reliable resource enabling research in the area of sexual violence.


Author(s):  
Daniel B. Chonde ◽  
Seifu J. Chonde

Author(s):  
Peilian Zhao ◽  
Cunli Mao ◽  
Zhengtao Yu

Aspect-Based Sentiment Analysis (ABSA), a fine-grained task of opinion mining, which aims to extract sentiment of specific target from text, is an important task in many real-world applications, especially in the legal field. Therefore, in this paper, we study the problem of limitation of labeled training data required and ignorance of in-domain knowledge representation for End-to-End Aspect-Based Sentiment Analysis (E2E-ABSA) in legal field. We proposed a new method under deep learning framework, named Semi-ETEKGs, which applied E2E framework using knowledge graph (KG) embedding in legal field after data augmentation (DA). Specifically, we pre-trained the BERT embedding and in-domain KG embedding for unlabeled data and labeled data with case elements after DA, and then we put two embeddings into the E2E framework to classify the polarity of target-entity. Finally, we built a case-related dataset based on a popular benchmark for ABSA to prove the efficiency of Semi-ETEKGs, and experiments on case-related dataset from microblog comments show that our proposed model outperforms the other compared methods significantly.


Sign in / Sign up

Export Citation Format

Share Document