scholarly journals RPM-Oriented Query Rewriting Framework for E-commerce Keyword-Based Sponsored Search (Student Abstract)

2020 ◽  
Vol 34 (10) ◽  
pp. 13769-13770
Author(s):  
Xiuying Chen ◽  
Daorui Xiao ◽  
Shen Gao ◽  
Guojun Liu ◽  
Wei Lin ◽  
...  

Sponsored search optimizes revenue and relevance, which is estimated by Revenue Per Mille (RPM). Existing sponsored search models are all based on traditional statistical models, which have poor RPM performance when queries follow a heavy-tailed distribution. Here, we propose an RPMoriented Query Rewriting Framework (RQRF) which outputs related bid keywords that can yield high RPM. RQRF embeds both queries and bid keywords to vectors in the same implicit space, converting the rewriting probability between each query and keyword to the distance between the two vectors. For label construction, we propose an RPM-oriented sample construction method, labeling keywords based on whether or not they can lead to high RPM. Extensive experiments are conducted to evaluate performance of RQRF. In a one month large-scale real-world traffic of e-commerce sponsored search system, the proposed model significantly outperforms traditional baseline.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sandeep Kumar Maurya ◽  
Sanjay K Singh ◽  
Umesh Singh

A one parameter right skewed, upside down bathtub type, heavy-tailed distribution is derived. Various statistical properties and maximum likelihood approaches for estimation purpose are studied. Five different real data sets with four different models are considered to illustrate the suitability of the proposed model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Swarup Chattopadhyay ◽  
Tanujit Chakraborty ◽  
Kuntal Ghosh ◽  
Asit K. Das

Author(s):  
A. V. Ponomarev

Introduction: Large-scale human-computer systems involving people of various skills and motivation into the information processing process are currently used in a wide spectrum of applications. An acute problem in such systems is assessing the expected quality of each contributor; for example, in order to penalize incompetent or inaccurate ones and to promote diligent ones.Purpose: To develop a method of assessing the expected contributor’s quality in community tagging systems. This method should only use generally unreliable and incomplete information provided by contributors (with ground truth tags unknown).Results:A mathematical model is proposed for community image tagging (including the model of a contributor), along with a method of assessing the expected contributor’s quality. The method is based on comparing tag sets provided by different contributors for the same images, being a modification of pairwise comparison method with preference relation replaced by a special domination characteristic. Expected contributors’ quality is evaluated as a positive eigenvector of a pairwise domination characteristic matrix. Community tagging simulation has confirmed that the proposed method allows you to adequately estimate the expected quality of community tagging system contributors (provided that the contributors' behavior fits the proposed model).Practical relevance: The obtained results can be used in the development of systems based on coordinated efforts of community (primarily, community tagging systems). 


2020 ◽  
Author(s):  
Anusha Ampavathi ◽  
Vijaya Saradhi T

UNSTRUCTURED Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient’s symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to “Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson’s disease, and Alzheimer’s disease”, from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like “Deep Belief Network (DBN) and Recurrent Neural Network (RNN)”. As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1670
Author(s):  
Waheeb Abu-Ulbeh ◽  
Maryam Altalhi ◽  
Laith Abualigah ◽  
Abdulwahab Ali Almazroi ◽  
Putra Sumari ◽  
...  

Cyberstalking is a growing anti-social problem being transformed on a large scale and in various forms. Cyberstalking detection has become increasingly popular in recent years and has technically been investigated by many researchers. However, cyberstalking victimization, an essential part of cyberstalking, has empirically received less attention from the paper community. This paper attempts to address this gap and develop a model to understand and estimate the prevalence of cyberstalking victimization. The model of this paper is produced using routine activities and lifestyle exposure theories and includes eight hypotheses. The data of this paper is collected from the 757 respondents in Jordanian universities. This review paper utilizes a quantitative approach and uses structural equation modeling for data analysis. The results revealed a modest prevalence range is more dependent on the cyberstalking type. The results also indicated that proximity to motivated offenders, suitable targets, and digital guardians significantly influences cyberstalking victimization. The outcome from moderation hypothesis testing demonstrated that age and residence have a significant effect on cyberstalking victimization. The proposed model is an essential element for assessing cyberstalking victimization among societies, which provides a valuable understanding of the prevalence of cyberstalking victimization. This can assist the researchers and practitioners for future research in the context of cyberstalking victimization.


Author(s):  
Clemens M. Lechner ◽  
Nivedita Bhaktha ◽  
Katharina Groskurth ◽  
Matthias Bluemke

AbstractMeasures of cognitive or socio-emotional skills from large-scale assessments surveys (LSAS) are often based on advanced statistical models and scoring techniques unfamiliar to applied researchers. Consequently, applied researchers working with data from LSAS may be uncertain about the assumptions and computational details of these statistical models and scoring techniques and about how to best incorporate the resulting skill measures in secondary analyses. The present paper is intended as a primer for applied researchers. After a brief introduction to the key properties of skill assessments, we give an overview over the three principal methods with which secondary analysts can incorporate skill measures from LSAS in their analyses: (1) as test scores (i.e., point estimates of individual ability), (2) through structural equation modeling (SEM), and (3) in the form of plausible values (PVs). We discuss the advantages and disadvantages of each method based on three criteria: fallibility (i.e., control for measurement error and unbiasedness), usability (i.e., ease of use in secondary analyses), and immutability (i.e., consistency of test scores, PVs, or measurement model parameters across different analyses and analysts). We show that although none of the methods are optimal under all criteria, methods that result in a single point estimate of each respondent’s ability (i.e., all types of “test scores”) are rarely optimal for research purposes. Instead, approaches that avoid or correct for measurement error—especially PV methodology—stand out as the method of choice. We conclude with practical recommendations for secondary analysts and data-producing organizations.


Author(s):  
Junshu Wang ◽  
Guoming Zhang ◽  
Wei Wang ◽  
Ka Zhang ◽  
Yehua Sheng

AbstractWith the rapid development of hospital informatization and Internet medical service in recent years, most hospitals have launched online hospital appointment registration systems to remove patient queues and improve the efficiency of medical services. However, most of the patients lack professional medical knowledge and have no idea of how to choose department when registering. To instruct the patients to seek medical care and register effectively, we proposed CIDRS, an intelligent self-diagnosis and department recommendation framework based on Chinese medical Bidirectional Encoder Representations from Transformers (BERT) in the cloud computing environment. We also established a Chinese BERT model (CHMBERT) trained on a large-scale Chinese medical text corpus. This model was used to optimize self-diagnosis and department recommendation tasks. To solve the limited computing power of terminals, we deployed the proposed framework in a cloud computing environment based on container and micro-service technologies. Real-world medical datasets from hospitals were used in the experiments, and results showed that the proposed model was superior to the traditional deep learning models and other pre-trained language models in terms of performance.


2010 ◽  
Vol 23 (12) ◽  
pp. 3157-3180 ◽  
Author(s):  
N. Eckert ◽  
H. Baya ◽  
M. Deschatres

Abstract Snow avalanches are natural hazards strongly controlled by the mountain winter climate, but their recent response to climate change has thus far been poorly documented. In this paper, hierarchical modeling is used to obtain robust indexes of the annual fluctuations of runout altitudes. The proposed model includes a possible level shift, and distinguishes common large-scale signals in both mean- and high-magnitude events from the interannual variability. Application to the data available in France over the last 61 winters shows that the mean runout altitude is not different now than it was 60 yr ago, but that snow avalanches have been retreating since 1977. This trend is of particular note for high-magnitude events, which have seen their probability rates halved, a crucial result in terms of hazard assessment. Avalanche control measures, observation errors, and model limitations are insufficient explanations for these trends. On the other hand, strong similarities in the pattern of behavior of the proposed runout indexes and several climate datasets are shown, as well as a consistent evolution of the preferred flow regime. The proposed runout indexes may therefore be usable as indicators of climate change at high altitudes.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 79 ◽  
Author(s):  
Xiaoyu Han ◽  
Yue Zhang ◽  
Wenkai Zhang ◽  
Tinglei Huang

Relation extraction is a vital task in natural language processing. It aims to identify the relationship between two specified entities in a sentence. Besides information contained in the sentence, additional information about the entities is verified to be helpful in relation extraction. Additional information such as entity type getting by NER (Named Entity Recognition) and description provided by knowledge base both have their limitations. Nevertheless, there exists another way to provide additional information which can overcome these limitations in Chinese relation extraction. As Chinese characters usually have explicit meanings and can carry more information than English letters. We suggest that characters that constitute the entities can provide additional information which is helpful for the relation extraction task, especially in large scale datasets. This assumption has never been verified before. The main obstacle is the lack of large-scale Chinese relation datasets. In this paper, first, we generate a large scale Chinese relation extraction dataset based on a Chinese encyclopedia. Second, we propose an attention-based model using the characters that compose the entities. The result on the generated dataset shows that these characters can provide useful information for the Chinese relation extraction task. By using this information, the attention mechanism we used can recognize the crucial part of the sentence that can express the relation. The proposed model outperforms other baseline models on our Chinese relation extraction dataset.


2021 ◽  
pp. 191-210
Author(s):  
Nikolay D. Golev ◽  
◽  
Irina P. Falomkina ◽  

The paper is dedicated to describing the word-building system of the Russian language in terms of its vocabulary. Lexical factors are discussed influencing the formation of lexical units’ potential as motivating units of word-building processes and relations and the realization of this potential in language activities. Of most interest for the authors are anthropocentric determinants, most of which are coordinating the lexical system and, through its mediation, the word-building system with the worldview of native speakers of the Russian language. The proposed model of derivational development of vocabulary provides such coordination through studying the deep-seated process of conceptualization of the words that are the potential motivators of neologisms. This study identifies the word frequency as an external manifestation of conceptualization. The frequency data were obtained from Google search system statistical data. Capturing not only usual but also occasional and potential words, this source is an effective tool for studying word-building processes and their results. This study has unveiled the interrelation between the language worldview of native speakers of Russian and their “word-building behavior” in language activities. The worldview has been found, first of all, to be determined by the pragmatic factor, which primarily influences the usage of a word in the speech reflected by its frequency. The frequency ranks lexical units due to their derivational potential and thereby provides a researcher with a reliable instrument for its study.


Sign in / Sign up

Export Citation Format

Share Document