scholarly journals Exploring the Benefits of Depth Information in Object Pixel Masking (Student Abstract)

2020 ◽  
Vol 34 (10) ◽  
pp. 13833-13834
Author(s):  
Anish Kachinthaya ◽  
Yi Ding ◽  
Tobias Hollerer

In this paper, we look at how depth data can benefit existing object masking methods applied in occluded scenes. Masking the pixel locations of objects within scenes helps computers get a spatial awareness of where objects are within images. The current state-of-the-art algorithm for masking objects in images is Mask R-CNN, which builds on the Faster R-CNN network to mask object pixels rather than just detecting their bounding boxes. This paper examines the weaknesses Mask R-CNN has in masking people when they are occluded in a frame. It then looks at how depth data gathered from an RGB-D sensor can be used. We provide a case study to show how simply applying thresholding methods on the depth information can aid in distinguishing occluded persons. The intention of our research is to examine how features from depth data can benefit object pixel masking methods in an explainable manner, especially in complex scenes with multiple objects.

2018 ◽  
Vol 108 (05) ◽  
pp. 319-324
Author(s):  
I. Bogdanov ◽  
A. Nuffer ◽  
A. Sauer

Der vorliegende Beitrag behandelt den Themenkomplex Ressourcen-effizienz und digitale Transformation im verarbeitenden Gewerbe sowie die dabei entstehenden Wechselwirkungen. Neben dem aktuellen Stand der Technik werden die im Rahmen einer aktuellen Studie durchgeführte Fallbeispielanalyse und die entwickelte Methodik zur Ermittlung der Ressourceneffizienzpotenziale vorgestellt. Diese Potenziale und die eingesetzten digitalen Maßnahmen sind zentrale Bausteine des vorliegenden Beitrags.   This article deals with the topic complex of resource efficiency and digital transformation in the manufacturing sector as well as the resulting interactions. In addition to the current state of the art and perspectives, the case study analysis carried out as part of a current study, as well as the developed method for establishing the resource efficiency potentials will be presented. The resultant potential and the digital measures are central components of this article.


2019 ◽  
Vol 11 (7) ◽  
pp. 2963-2986 ◽  
Author(s):  
Nikos Dipsis ◽  
Kostas Stathis

Abstract The numerous applications of internet of things (IoT) and sensor networks combined with specialized devices used in each has led to a proliferation of domain specific middleware, which in turn creates interoperability issues between the corresponding architectures and the technologies used. But what if we wanted to use a machine learning algorithm to an IoT application so that it adapts intelligently to changes of the environment, or enable a software agent to enrich with artificial intelligence (AI) a smart home consisting of multiple and possibly incompatible technologies? In this work we answer these questions by studying a framework that explores how to simplify the incorporation of AI capabilities to existing sensor-actuator networks or IoT infrastructures making the services offered in such settings smarter. Towards this goal we present eVATAR+, a middleware that implements the interactions within the context of such integrations systematically and transparently from the developers’ perspective. It also provides a simple and easy to use interface for developers to use. eVATAR+ uses JAVA server technologies enhanced by mediator functionality providing interoperability, maintainability and heterogeneity support. We exemplify eVATAR+ with a concrete case study and we evaluate the relative merits of our approach by comparing our work with the current state of the art.


Author(s):  
Kevin R. Anderson ◽  
Wael Yassine

Abstract This paper presents modeling of the Puna Geothermal Venture as a case study in understanding how the technology of geothermal can by successfully implemented. The paper presents a review of the Puna Geothermal Venture specifications, followed by simulation results carried out using NREL SAM and RETSCREEN analysis tools in order to quantify the pertinent metrics associated with the geothermal powerplant by retrofitting its current capacity of 30 MW to 60 MW. The paper closes with a review of current state-of-the art H2S abatement strategies for geothermal power plants, and presents an outline of how these technologies can be implemented at the Puna Geothermal Venture.


Designs ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 37 ◽  
Author(s):  
Charul Chadha ◽  
Kathryn Crowe ◽  
Christina Carmen ◽  
Albert Patterson

This work explores an additive-manufacturing-enabled combination-of-function approach for design of modular products. AM technologies allow the design and manufacturing of nearly free-form geometry, which can be used to create more complex, multi-function or multi-feature parts. The approach presented here replaces sub-assemblies within a modular product or system with more complex consolidated parts that are designed and manufactured using AM technologies. This approach can increase the reliability of systems and products by reducing the number of interfaces, as well as allowing the optimization of the more complex parts during the design. The smaller part count and the ability of users to replace or upgrade the system or product parts on-demand should reduce user risk, life-cycle costs, and prevent obsolescence for the user of many systems. This study presents a detailed review on the current state-of-the-art in modular product design in order to demonstrate the place, need and usefulness of this AM-enabled method for systems and products that could benefit from it. A detailed case study is developed and presented to illustrate the concepts.


Author(s):  
Jorge R. Martins ◽  
Vasco S. Costa ◽  
João M. Pereira

Rendering human hair can be a hard task because of the required high super-sampling rate to render thin hair fibers without noticeable aliasing. Additionally, the current state-of-the-art bounding volume hierarchies (BVHs) are not suitable to hair rendering. In fact, the axis-aligned bounding boxes (AABBs) do not tightly bind hair primitives which impacts negatively the intersection tests activity. Both limitations can degrade severely the rendering performance so described in this article, a cone tracing GPU approach coupled with a hybrid bounding volume hierarchy to tackle these problems. The hybrid BVH makes use of both oriented and axis aligned bounding boxes. It is shown that the experiment is able to drastically reduce the super-sampling required to produce aliasing free images while minimizing the number of intersection tests and achieving speedups of up to 4, depending on the scene.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4184
Author(s):  
Zhiwei Cao ◽  
Huihua Yang ◽  
Juan Zhao ◽  
Shuhong Guo ◽  
Lingqiao Li

Multispectral pedestrian detection, which consists of a color stream and thermal stream, is essential under conditions of insufficient illumination because the fusion of the two streams can provide complementary information for detecting pedestrians based on deep convolutional neural networks (CNNs). In this paper, we introduced and adapted a simple and efficient one-stage YOLOv4 to replace the current state-of-the-art two-stage fast-RCNN for multispectral pedestrian detection and to directly predict bounding boxes with confidence scores. To further improve the detection performance, we analyzed the existing multispectral fusion methods and proposed a novel multispectral channel feature fusion (MCFF) module for integrating the features from the color and thermal streams according to the illumination conditions. Moreover, several fusion architectures, such as Early Fusion, Halfway Fusion, Late Fusion, and Direct Fusion, were carefully designed based on the MCFF to transfer the feature information from the bottom to the top at different stages. Finally, the experimental results on the KAIST and Utokyo pedestrian benchmarks showed that Halfway Fusion was used to obtain the best performance of all architectures and the MCFF could adapt fused features in the two modalities. The log-average miss rate (MR) for the two modalities with reasonable settings were 4.91% and 23.14%, respectively.


2008 ◽  
pp. 981-1005
Author(s):  
P. Giorgini ◽  
H. Mouratidis ◽  
N. Zannone

Although the concepts of security and trust play an important issue in the development of information systems, they have been mainly neglected by software engineering methodologies. In this chapter, we present an approach that considers security and trust throughout the software development process. Our approach integrates two prominent software engineering approaches, one that provides a security-oriented process and one that provides a trust management process. The result is the de-velopment of a methodology that considers security and trust issues as part of its development process. Such integration represents an advance over the current state of the art by providing the ?rst effort to consider security and trust issues under a single software engineering methodology. A case study from the health domain is employed to illustrate our approach.


Author(s):  
Ralph L. Barnett ◽  
Adam A. E. Ziemba ◽  
Theodore Liber

The notion of slipperiness is rarely associated with a concrete walkway. The aggressive nature of this surface invariably satisfies the classical criterion of a safe floor. The case study described in this paper challenges this preconception. It involves a woman who enters an indoor stairwell of a parking lot and slips on the dry concrete landing while approaching the stairs with her arm outstretched to grasp the railing. The current state-of-the-art of human slipping provides this victim with no remedy at law. This paper presents a forensic and safety study that focuses on slip and fall. Slip is usually analyzed by a classical system that has no redeeming features. This protocol provides a go/no-go criterion that proclaims a walking surface safe if its interaction with a surrogate material (e.g. leather) produces an average coefficient of friction greater than 0.5. It turns out that many walkers slip on such mythical “safe” floors. The subject case adopts a modern theory of human slipping that quantitatively predicts the number of walkers who will slip on a given surface including concrete landings.


Author(s):  
Charul Chadha ◽  
Kathryn Crowe ◽  
Christina Carmen ◽  
Albert Patterson

This work explores an additive-manufacturing-enabled combination-of-function approach for design of modular products. AM technologies allow the design and manufacturing of nearly free-form geometry, which can be used to create more complex, multi-function or multi-feature parts. The approach presented here replaces sub-assemblies within a modular product or system with more complex single parts that are designed and manufactured using AM technologies. This approach can increase the reliability of systems and products by reducing the number of interfaces, as well as allowing the optimization of the more complex parts during the design. The smaller part count and the ability of users to replace or upgrade the system or product parts on-demand should reduce user risk, life-cycle costs, and prevent obsolescence for the user of many systems. This study presents a detailed review on the current state-of-the-art in modular product design in order to demonstrate the place, need and usefulness of this AM-enabled method for systems and products that could benefit from it. A detailed case study is developed and presented to demonstrate the concepts.


10.29007/cv3b ◽  
2018 ◽  
Author(s):  
Claudia Peschiera ◽  
Luca Pulina ◽  
Armando Tacchella

In this paper we report about QBFEVAL'10, the seventh in a series of events established with the aim of assessing the advancements in reasoning about quantified Boolean formulas (QBFs). The paper discusses the results obtained and the evaluation setup, from the criteria used to select QBF instances down to the hardware infrastructure. We also discuss the current state-of-the-art in light of past challenges and we envision future research directions that are motivated by the results of QBFEVAL'10.


Sign in / Sign up

Export Citation Format

Share Document