Slipping on Concrete: A Case Study

Author(s):  
Ralph L. Barnett ◽  
Adam A. E. Ziemba ◽  
Theodore Liber

The notion of slipperiness is rarely associated with a concrete walkway. The aggressive nature of this surface invariably satisfies the classical criterion of a safe floor. The case study described in this paper challenges this preconception. It involves a woman who enters an indoor stairwell of a parking lot and slips on the dry concrete landing while approaching the stairs with her arm outstretched to grasp the railing. The current state-of-the-art of human slipping provides this victim with no remedy at law. This paper presents a forensic and safety study that focuses on slip and fall. Slip is usually analyzed by a classical system that has no redeeming features. This protocol provides a go/no-go criterion that proclaims a walking surface safe if its interaction with a surrogate material (e.g. leather) produces an average coefficient of friction greater than 0.5. It turns out that many walkers slip on such mythical “safe” floors. The subject case adopts a modern theory of human slipping that quantitatively predicts the number of walkers who will slip on a given surface including concrete landings.

2018 ◽  
Vol 108 (05) ◽  
pp. 319-324
Author(s):  
I. Bogdanov ◽  
A. Nuffer ◽  
A. Sauer

Der vorliegende Beitrag behandelt den Themenkomplex Ressourcen-effizienz und digitale Transformation im verarbeitenden Gewerbe sowie die dabei entstehenden Wechselwirkungen. Neben dem aktuellen Stand der Technik werden die im Rahmen einer aktuellen Studie durchgeführte Fallbeispielanalyse und die entwickelte Methodik zur Ermittlung der Ressourceneffizienzpotenziale vorgestellt. Diese Potenziale und die eingesetzten digitalen Maßnahmen sind zentrale Bausteine des vorliegenden Beitrags.   This article deals with the topic complex of resource efficiency and digital transformation in the manufacturing sector as well as the resulting interactions. In addition to the current state of the art and perspectives, the case study analysis carried out as part of a current study, as well as the developed method for establishing the resource efficiency potentials will be presented. The resultant potential and the digital measures are central components of this article.


2021 ◽  
pp. 095042222110493
Author(s):  
Maria de Fátima Cruz ◽  
Mário Franco ◽  
Margarida Rodrigues

Recently, some authors have pointed out that the subject of university–firm collaboration (UFC) in the teaching context has been neglected. To fill this gap, and considering that educational provision is co-created with various stakeholders, this study aims to provide an exploratory characterization of the current state of UFC in the teaching context and to explore UFC as a mechanism for the co-creation of value. A qualitative approach was chosen, through a case study applied to one faculty at a Portuguese university. Data were obtained through documentary analysis and interviews with people in charge of this faculty. The results suggest that collaboration activities in this domain occur, albeit not systematically or in a planned way. The involvement of the current faculty direction in stimulating this collaboration is recognized, and the leaders see this phenomenon as a mechanism for co-creating value between firms and academia. As a practical contribution, the study proposes a set of recommendations to encourage such UFC. The scientific contribution arises from the presentation of a conceptual structure which explores the UFC phenomenon in the teaching context, bringing together the perspectives of collaboration and the co-creation of educational provision, as well as presenting a number of suggestions for future research.


2019 ◽  
Vol 9 (19) ◽  
pp. 4093 ◽  
Author(s):  
Santiago Royo ◽  
Maria Ballesta-Garcia

Lidar imaging systems are one of the hottest topics in the optronics industry. The need to sense the surroundings of every autonomous vehicle has pushed forward a race dedicated to deciding the final solution to be implemented. However, the diversity of state-of-the-art approaches to the solution brings a large uncertainty on the decision of the dominant final solution. Furthermore, the performance data of each approach often arise from different manufacturers and developers, which usually have some interest in the dispute. Within this paper, we intend to overcome the situation by providing an introductory, neutral overview of the technology linked to lidar imaging systems for autonomous vehicles, and its current state of development. We start with the main single-point measurement principles utilized, which then are combined with different imaging strategies, also described in the paper. An overview of the features of the light sources and photodetectors specific to lidar imaging systems most frequently used in practice is also presented. Finally, a brief section on pending issues for lidar development in autonomous vehicles has been included, in order to present some of the problems which still need to be solved before implementation may be considered as final. The reader is provided with a detailed bibliography containing both relevant books and state-of-the-art papers for further progress in the subject.


2019 ◽  
Vol 11 (7) ◽  
pp. 2963-2986 ◽  
Author(s):  
Nikos Dipsis ◽  
Kostas Stathis

Abstract The numerous applications of internet of things (IoT) and sensor networks combined with specialized devices used in each has led to a proliferation of domain specific middleware, which in turn creates interoperability issues between the corresponding architectures and the technologies used. But what if we wanted to use a machine learning algorithm to an IoT application so that it adapts intelligently to changes of the environment, or enable a software agent to enrich with artificial intelligence (AI) a smart home consisting of multiple and possibly incompatible technologies? In this work we answer these questions by studying a framework that explores how to simplify the incorporation of AI capabilities to existing sensor-actuator networks or IoT infrastructures making the services offered in such settings smarter. Towards this goal we present eVATAR+, a middleware that implements the interactions within the context of such integrations systematically and transparently from the developers’ perspective. It also provides a simple and easy to use interface for developers to use. eVATAR+ uses JAVA server technologies enhanced by mediator functionality providing interoperability, maintainability and heterogeneity support. We exemplify eVATAR+ with a concrete case study and we evaluate the relative merits of our approach by comparing our work with the current state of the art.


1969 ◽  
Vol 39 (2) ◽  
pp. 101-120 ◽  
Author(s):  
S. P. Hersh ◽  
P. L. Grady

A review of the literature and extensive field interviews have been conducted on the subject of needle heating in high-speed sewing. As a result of this investigation, a survey of the current state of the art and knowledge available in the field has been completed and is presented in the following categories: (1) the nature of the problem and the difficulties which arise in commercial operations; (2) quantitative methods of measuring needle temperatures; (3) the influence of machine factors such as sewing speed, length of sewing time, and needle design on the heat generated during sewing; (4) the influence of material factors such as fabric structure and finish, layers of fabric, and sewing thread on needle heating; (5) techniques for alleviating needle heating problems; and (6) the mechanism of generation and dissipation of heat in the sewing process. Some heretofore unpublished data are presented.


Publications ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 49
Author(s):  
Diogo Correia ◽  
Leonor Teixeira ◽  
João Lourenço Marques

The lack of examples of smart-city initiatives and the sharing of best practices in Portugal confirm the gap in the transference of empirical knowledge to the scientific literature in this area. The smart-city concept has passed through three stages. However, its evolution has not been noted equally throughout countries and their territories. The literature only provides information about specific projects implemented in a few cities. Therefore, the aim of this paper was to study the state-of-the-art of smart cities in Portugal by analyzing 25 editions of the most relevant national-wide smart-cities magazine. First, the objective of analyzing the magazine was to study each Portuguese city in terms of the subject areas and types of existing initiatives in order, ultimately, to frame cities within their respective smart-city phases, as per the literature. Second, the aim of the paper was also to provide information about the evolution of the concept through analyses of embedded experts’ quotes. The results of the first are complemented with the analysis of interviews with policymakers to provide information about the existing challenges to implementing a smart city and to understand the role of government therein. Qualitative and quantitative analyses were performed on the case study. The findings suggest that the three smart-city phases are perceived in slightly different ways in Portugal and heterogeneity within the country can be noted from the lack of strategies and a standard framework.


Author(s):  
Kevin R. Anderson ◽  
Wael Yassine

Abstract This paper presents modeling of the Puna Geothermal Venture as a case study in understanding how the technology of geothermal can by successfully implemented. The paper presents a review of the Puna Geothermal Venture specifications, followed by simulation results carried out using NREL SAM and RETSCREEN analysis tools in order to quantify the pertinent metrics associated with the geothermal powerplant by retrofitting its current capacity of 30 MW to 60 MW. The paper closes with a review of current state-of-the art H2S abatement strategies for geothermal power plants, and presents an outline of how these technologies can be implemented at the Puna Geothermal Venture.


Designs ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 37 ◽  
Author(s):  
Charul Chadha ◽  
Kathryn Crowe ◽  
Christina Carmen ◽  
Albert Patterson

This work explores an additive-manufacturing-enabled combination-of-function approach for design of modular products. AM technologies allow the design and manufacturing of nearly free-form geometry, which can be used to create more complex, multi-function or multi-feature parts. The approach presented here replaces sub-assemblies within a modular product or system with more complex consolidated parts that are designed and manufactured using AM technologies. This approach can increase the reliability of systems and products by reducing the number of interfaces, as well as allowing the optimization of the more complex parts during the design. The smaller part count and the ability of users to replace or upgrade the system or product parts on-demand should reduce user risk, life-cycle costs, and prevent obsolescence for the user of many systems. This study presents a detailed review on the current state-of-the-art in modular product design in order to demonstrate the place, need and usefulness of this AM-enabled method for systems and products that could benefit from it. A detailed case study is developed and presented to illustrate the concepts.


2020 ◽  
Vol 34 (10) ◽  
pp. 13833-13834
Author(s):  
Anish Kachinthaya ◽  
Yi Ding ◽  
Tobias Hollerer

In this paper, we look at how depth data can benefit existing object masking methods applied in occluded scenes. Masking the pixel locations of objects within scenes helps computers get a spatial awareness of where objects are within images. The current state-of-the-art algorithm for masking objects in images is Mask R-CNN, which builds on the Faster R-CNN network to mask object pixels rather than just detecting their bounding boxes. This paper examines the weaknesses Mask R-CNN has in masking people when they are occluded in a frame. It then looks at how depth data gathered from an RGB-D sensor can be used. We provide a case study to show how simply applying thresholding methods on the depth information can aid in distinguishing occluded persons. The intention of our research is to examine how features from depth data can benefit object pixel masking methods in an explainable manner, especially in complex scenes with multiple objects.


2020 ◽  
Vol 12 (16) ◽  
pp. 6373 ◽  
Author(s):  
Magdalena Ramirez-Peña ◽  
Francisco J. Abad Fraga ◽  
Jorge Salguero ◽  
Moises Batista

The supply chain is currently taking on a very important role in organizations seeking to improve the competitiveness and profitability of the company. Its transversal character mainly places it in an unbeatable position to achieve this role. This article, through a study of each of the key enabling technologies of Industry 4.0, aims to obtain a general overview of the current state of the art in shipbuilding adapted to these technologies. To do so, a systematic review of what the scientific community says is carried out, dividing each of the technologies into different categories. In addition, the global vision of countries interested in each of the enabling technologies is also studied. Both studies present a general vision to the companies of the concerns of the scientific community, thus encouraging research on the subject that is focused on the sustainability of the shipbuilding supply chain.


Sign in / Sign up

Export Citation Format

Share Document