scholarly journals Water Loss and Salvage in Saltcedar (Tamarix spp.) Stands on the Pecos River, Texas

2009 ◽  
Vol 2 (4) ◽  
pp. 309-317 ◽  
Author(s):  
William L. Hatler ◽  
Charles R. Hart

AbstractWater use by saltcedar, an invasive phreatophyte, is of significant concern in many riparian zones in the western United States. Diurnal groundwater fluctuations were analyzed to estimate evapotranspiration and water salvage (water available for other ecological functions) in saltcedar stands over a 6-yr period on a site along the Pecos River in Texas. Seasonal stand-level saltcedar water loss at an untreated control site ranged from 0.42 to 1.18 m/yr. Seasonal water salvage following application of imazapyr ranged from 31% 4 yr after treatment to 82% 2 yr after treatment. Significant water savings may be achieved by chemical saltcedar control, dependent upon water use by replacement vegetation and saltcedar regrowth. A regrowth management strategy is essential to maintain long-term water salvage.

2010 ◽  
Vol 26 (2) ◽  
pp. 215-226 ◽  
Author(s):  
M. A. Sobrado

Abstract:Leaf blade physical and chemical characteristics, wood composition and anatomy, as well as long-term water-use efficiency and hydraulic characteristics of leaf-bearing terminal branches were assessed in tree species growing in contrasting forests of the Venezuelan Amazonas: mixed forest on oxisol soil and caatinga on podzol soil. Two upper-canopy tree species were selected in each forest, and three individuals per species were tagged for sampling. Leaf nitrogen isotopic signatures (δ15N) were negative and species-specific, which suggests that in species of both forest the N-cycle is closed, and that tree species can withdraw N from a variety of N-pools. Leaf construction costs, dry mass to leaf area ratio, thickness and sclerophylly index tended to increase in microhabitats with lower fertility and large water table fluctuations. The hydraulic characteristics and long-term water use are species-specific and related to the particular conditions of the habitat at the local scale. Ocotea aciphylla (mixed forest) with a combination of low δ13C and high hydraulic sufficiency may maintain high water loss without risk of xylem embolisms. By contrast, Micranda sprucei (slopes of the caatinga forest), had a combination of relatively high hydraulic sufficiency and the highest long-term water-use efficiency, which suggest that embolism risk would be avoided by water loss restriction. Assuming a warmer and drier climate in the future, the species with more conservative water transport and/or better stomatal control would be at lower risk of mortality.


2018 ◽  
Vol 35 (4) ◽  
pp. 133-136
Author(s):  
R. N. Ibragimov

The article examines the impact of internal and external risks on the stability of the financial system of the Altai Territory. Classification of internal and external risks of decline, affecting the sustainable development of the financial system, is presented. A risk management strategy is proposed that will allow monitoring of risks, thereby these measures will help reduce the loss of financial stability and ensure the long-term development of the economy of the region.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 135-141 ◽  
Author(s):  
Z. Pilipovic ◽  
R. Taylor

In 1996, as part of Waitakere Council’s Water Cycle Strategy, a pressure standardisation programme to permanently lower the average supply pressure citywide was implemented with the aim of reducing water loss and water use. The experience gained during the 1994/95 Auckland water shortage had confirmed that there was considerable scope to reduce pressures in many areas. Since 1996 water pressures have been reduced in over 60% of the reticulated area of the city, with the average pressure reduced from 710 kPa to 540 kPa. As a result of this programme water loss from the network has been reduced, there has been a reduction in the frequency of mains breaks and it is likely that the life of water pipeline assets has been extended. Furthermore both pressure and demand management initiatives have reduced per capita water use in the city by more than 10%. A network computer model was used as a design tool to check the network under various pressure regimes and cost benefit analyses were carried out for various design scenarios. Fire sprinkler systems were checked as part of the design process. Minimum service standards were not reduced and in some cases pressures were actually increased. This paper covers the various aspects of the design, the implementation and the results of the pressure standardisation programme.


2021 ◽  
Author(s):  
Randall W Long ◽  
Carla M D’Antonio ◽  
Tom L Dudley ◽  
Kevin R Hultine

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


1997 ◽  
Vol 78 (6) ◽  
pp. 3460-3464 ◽  
Author(s):  
Terry Crow ◽  
Vilma Siddiqi

Crow, Terry and Vilma Siddiqi. Time-dependent changes in excitability after one-trial conditioning of Hermissenda. J. Neurophysiol. 78: 3460–3464, 1997. The visual system of Hermissenda has been studied extensively as a site of cellular plasticity produced by classical conditioning. A one-trial conditioning procedure consisting of light paired with the application of serotonin (5-HT) to the exposed, but otherwise intact, nervous system produces suppression of phototactic behavior tested 24 h after conditioning. Short- and long-term enhancement (STE and LTE) of excitability in identified type B photoreceptors is a cellular correlate of one-trial conditioning. LTE can be expressed in the absence of STE suggesting that STE and LTE may be parallel processes. To examine the development of enhancement, we studied its time-dependent alterations after one-trial conditioning. Intracellular recordings from identified type B photoreceptors of independent groups collected at different times after conditioning revealed that enhanced excitability follows a biphasic pattern in its development. The analysis of spikes elicited by 2 and 30 s extrinsic current pulses at different levels of depolarization showed that enhancement reached a peak 3 h after conditioning. From its peak, excitability decreased toward baseline control levels 5–6 h after conditioning followed by an increase to a stable plateau at 16 to 24 h postconditioning. Excitability changes measured in cells from unpaired control groups showed maximal changes 1 h posttreatment that rapidly decremented within 2 h. The conditioned stimulus (CS) elicited significantly more spikes 24 h postconditioning for the conditioned group as compared with the unpaired control group. The analysis of the time-dependent development of enhancement may reveal the processes underlying different stages of memory for this associative experience.


2005 ◽  
Vol 85 (1) ◽  
pp. 81-93 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner ◽  
F. Selles ◽  
P. G. Jefferson ◽  
B. G. McConkey ◽  
...  

Assessment of the long-term impact of fertilizers and other management factors on crop production and environmental sustainability of cropping systems in the semi-arid Canadian prairies is needed. This paper discusses the long-term influence of N and P fertilizers on crop production, N uptake and water use of hard red spring wheat (Triticum aestivum L.), and the effect of the preceding crop type [flax (Linum usitatissimum L.) and fall rye (Secale cereale L.)] on wheat grown on a medium-textured, Orthic Brown Chernozem at Swift Current, Saskatchewan. We analysed 36 yr of results (1967–2002) from eight crop rotation-fertility treatments: viz., fallow-wheat receiving N and P (F-W, N + P), three F-W-W treatments fertilized with (i) N + P, (ii) P only, and (iii) N only; two other 3-yr mixed rotations with N + P (i) F-flax-W (F-Flx-W) and (ii) F-fall rye-W (F-Rye-W); and two continuous wheat rotations (Cont W), one receiving N + P and the other only P. Growing season weather conditions during the 36-yr period were near the long-term mean, but the first 22 yr were generally drier than normal while the last 14 yr (1989–2002) had average to above-average growing conditions. This was partly responsible for grain and N yield being greater in the latter period than in the first 22 yr. The 36-yr average response of wheat grown on fallow to P fertilizer was 339 kg ha-1, while the response to N fertilizer over this period was only 123 kg ha-1. The 36-yr average response of wheat grown on stubble to N was 344 kg ha-1 for F-W-(W) and 393 kg ha-1 for Cont W. Neither flax nor fall rye influenced the yield response of the following wheat crops. Annualized grain production for F-W (N + P), F-W-W (+ N) and F-W-W (+ P) rotations were similar (1130 kg ha-1 yr-1); this was about 15% lower than for F-W-W (N + P), 40% lower than for Cont W (N + P), and 5% lower than for Cont W (+ P). Annualized aboveground N yield for Cont W (N + P) was 57% higher than for Cont W (+ P). Regressions were developed relating straw to grain yields for wheat, flax and fall rye. The amount of NO3-N left in the soil was directly related to amount of N applied and inversely to N removed in the crop. Thus, F-(W)-W (+ N) left about 28% more NO3-N in the rooting zone than F-(W)-W (N + P), while F-W-(W) (N + P) left 20% more than F-W-(W) (+ P), and Cont W (N + P) left 39% more than Cont W (+ P). F-Rye-W (N + P) left much less NO3-N in the soil than any other fallow-containing system and similar amounts to Cont W (N + P). Key words: Yields, grain protein, N and P fertilizer, straw/grain regressions, water use, soil nitrate


Sign in / Sign up

Export Citation Format

Share Document