Pitted morningglory (Ipomoea lacunosa) germination and emergence as affected by environmental factors and seeding depth

Weed Science ◽  
2006 ◽  
Vol 54 (5) ◽  
pp. 910-916 ◽  
Author(s):  
Marcos J. Oliveira ◽  
Jason K. Norsworthy

Laboratory and greenhouse experiments were conducted to determine the effect of light, temperature, solution pH, solution osmotic potential, and oxygen concentration on pitted morningglory germination and radicle plus hypocotyl elongation, and seeding depth on its subsequent emergence. Daily exposure of seed to natural light resulted in lower germination than in darkness, whereas germination was not influenced by brief exposure to red or far-red light. Germination occurred over a wide range of constant temperatures, from 7.5 to 52.5 C, with optimum germination between 20 and 25 C. Germination occurred at solution pH range of 3 to 10 and was optimal from pH 6 to 8. Radicle plus hypocotyl elongation was influenced by the interaction of temperature and solution pH. A combination of acidic medium (pH 6) and high temperature (30 C) resulted in the greatest radicle plus hypocotyl length of 7.6 cm after a 7-d incubation. Germination and radicle plus hypocotyl elongation, averaged over the 15 and 30 C temperature, decreased with increasing moisture stress, with less than 3% normalized germination at −1.0 MPa. Germination was 29, 40, and 51% at 2, 10, and 20% oxygen, respectively, averaged over 15 and 30 C. Germination of seed lying on the soil surface covered with filter paper or without any cover was similar, averaging 64%. Normalized emergence, relative to germination on the soil surface, decreased with increasing burial depth to 4% emergence at 10 cm, with a mean emergence depth of 4.1 cm, averaged across two soil types.

Weed Science ◽  
2005 ◽  
Vol 53 (5) ◽  
pp. 657-662 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Marcos J. Oliveira

Laboratory and greenhouse experiments were conducted to determine the effect of light, temperature, moisture stress, solution pH, and burial depth on coffee senna germination and emergence. Seeds germinated equally with or without light, and pretreatment with red or far-red light did not affect germination. Optimum temperature for germination was 25 C, and a high germination percentage (> 70%) occurred from 12.5 to 30 C. The low temperature threshold for germination was between 10 and 12.5 C, whereas the upper threshold was near 45 C. Coffee senna germination in response to moisture stress and solution pH differed at 15 and 30 C. At −0.4 MPa, no germination occurred at 15 C, whereas 15% germination occurred at 30 C. Optimum germination was at pH 6, but further increases in pH had a more negative effect on germination at 15 C than at 30 C. Coffee senna germination ranged from 9 to 12% at pH 3, but was 0% at pH 10, which indicates that coffee senna germination was more tolerant of acidic than basic solutions. Depth-mediated emergence inhibition was sigmoidal, with greatest emergence on the soil surface. Emergence from 2- to 10-cm depths reached 95% of the total emergence 1 to 3 d earlier in a sandy loam than in a sand soil. Mean emergence depth was 1.7 cm in the sand and 2.4 cm in the sandy loam soil. Knowledge gained from this research will be instrumental in developing a better understanding of the requirements for coffee senna germination and emergence, allowing further development and improvement of integrated weed management strategies specific to this troublesome weed.


Weed Science ◽  
2009 ◽  
Vol 57 (3) ◽  
pp. 235-240 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
David E. Johnson

Junglerice is one of the most serious grass weeds of rice in the tropics. Experiments were conducted in the laboratory and screenhouse to determine the influence of environmental factors on seed germination and seedling emergence of junglerice in the Philippines. In the laboratory, germination was stimulated by light, suggesting that seeds of this species are positively photoblastic. The tested temperatures (35/25, 30/20, and 25/15 C alternating day/night temperatures), however, did not influence germination. Germination in the laboratory was not affected by a soil pH range of 4 to 9, but was decreased by salinity (> 50 mM NaCl) and moisture stress (< −0.2 MPa osmotic potential). In the screenhouse, germination of junglerice was greatest (97%) for seeds at the soil surface, but emergence declined exponentially with increasing seed burial depth, and no seedlings emerged from seeds buried at 6 cm. In pots, seedling emergence declined markedly with the addition of rice residue to the soil surface at rates equivalent to 4 to 6 tonnes (t) ha−1. As germination of junglerice was strongly stimulated by light, and seedling emergence was optimal at shallow burial depths, this species is likely to be problematic in reduced tillage systems.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 634-641 ◽  
Author(s):  
Hongchun Wang ◽  
Bing Zhang ◽  
Liyao Dong ◽  
Yuanlai Lou

The influence of temperature, light, solution pH, water stress, salt stress, and burial depth on seed germination and seedling emergence of catchweed bedstraw and the sensitivity of that weed to commonly available herbicides in China were studied in laboratory and greenhouse. Germination occurred at day/night temperatures from 5/0 C to 30/25 C, with optimum germination at 15/10 C. Catchweed bedstraw germinated equally well under a 12-h photoperiod and continuous darkness; however, a 24-h photoperiod inhibited seed germination. Catchweed bedstraw seed is moderately sensitive to osmotic potential and salt stress, with 15 and 3% germination rates at an osmotic potential of −0.5 Mpa and salinity level of 120 mM, respectively. Maximum seed germination was observed in near neutral pH; germination was greater than 80% over a broad pH range from 5 to 8. Seedling emergence of the seeds buried at a depth of 1 cm was higher (74%) than those placed on the soil surface (20%), but declined with burial depth increasing. Few (10%) seedlings emerged when seeds were placed at a depth of 5 cm. Bensulfuron-methyl, and ethametsulfuron-methyl applied PRE and tribenuron-methyl, fluroxypyr, and florasulam applied POST can be used to provide greater than 80% control of catchweed bedstraw. The results of this study have contributed to more complete understanding of the germination and emergence of catchweed bedstraw.


2019 ◽  
Vol 70 (4) ◽  
pp. 367 ◽  
Author(s):  
Navneet Kaur Mutti ◽  
Gulshan Mahajan ◽  
Bhagirath Singh Chauhan

Echinochloa colona L. (Link) (awnless barnyard grass) is one of the top three most problematic weeds of summer crops in Australia. This weed has evolved resistance to glyphosate. A study was conducted to evaluate the effect of environmental factors on the germination and seedling emergence of a glyphosate-resistant (GR) and a glyphosate-susceptible (GS) biotype of E. colona. The two biotypes had similar germination and emergence responses to light and temperature conditions, water stress, solution pH, sorghum residue cover and seed burial depth. Light stimulated germination more than dark conditions, and seeds germinated at a wide range of alternating day/night temperatures, from 20°C/10°C to 35°C/25°C, whereas no seeds germinated at 15°C/5°C. These results suggest that E. colona can emerge in spring, summer and autumn in Queensland. The sodium chloride concentration required to inhibit 50% germination was greater for the GR biotype (209 mm) than the GS biotype (174 mm). Seed germination was not affected by pH in the range 4–10. Water stress reduced germination by 50% at an osmotic potential of –0.44 MPa. In a shade-house study, retention of sorghum residue cover on the soil surface reduced the seedling emergence of E. colona. Emergence was 70% in the absence of crop residue, whereas a residue amount of 8 t ha–1 reduced emergence to 47%. Emergence was greatest for seeds placed on the soil surface and declined linearly with increasing burial depth; no seedlings emerged from 8 cm depth. The GR biotype had higher germination than the GS biotype under high sodium chloride concentrations; therefore, this biotype may be highly competitive with crops under highly saline conditions. Because germination was high on the soil surface and was stimulated by light, this weed will remain problematic under no-till farming systems in Australia.


Weed Science ◽  
2018 ◽  
Vol 67 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Nadeem Iqbal ◽  
Sudheesh Manalil ◽  
Bhagirath S. Chauhan ◽  
Steve W. Adkins

AbstractSesbania [Sesbania cannabina(Retz.) Pers.] is a problematic emerging weed species in Australian cotton-farming systems. However, globally, no information is available regarding its seed germination biology, and better understanding will help in devising superior management strategies to prevent further infestations. Laboratory and glasshouse studies were conducted to evaluate the impact of various environmental factors such as light, temperature, salt, osmotic and pH stress, and burial depth on germination and emergence of two Australian biotypes ofS. cannabina. Freshly harvested seeds of both biotypes possessed physical dormancy. A boiling-water scarification treatment (100±2 C) of 5-min duration was the optimum treatment to overcome this dormancy. Once dormancy was broken, the Dalby biotype exhibited a greater germination (93%) compared with the St George biotype (87%). The nondormant seeds of both biotypes showed a neutral photoblastic response to light and dark conditions, with germination marginally improved (6%) under illumination. Maximum germination of both biotypes occurred under an alternating temperature regime of 30/20 and 35/25 C and under constant temperatures of 32 or 35 C, with no germination at 8 or 11 C. Seed germination of both biotypes decreased linearly from 87% to 14% with an increase in moisture stress from 0.0 to −0.8 MPa, with no germination possible at −1.0 MPa. There was a gradual decline in germination for both biotypes when imbibed in a range of salt solutions of 25 to 250 mM, with a 50% reduction in germination occurring at 150 mM. Both biotypes germinated well under a wide range of pH values (4.0 to 10.0), with maximum germination (94%) at pH 9.0. The greatest emergence rate of the Dalby (87%) and St George (78%) biotypes was recorded at a burial depth of 1.0 cm, with no emergence at 16.0 cm. Deep tillage seems to be the best management strategy to stopS. cannabina’s emergence and further infestation of cotton (Gossypium hirsutumL.) fields. The findings of this study will be helpful to cotton agronomists in devising effective, sustainable, and efficient integrated weed management strategies for the control ofS. cannabinain cotton cropping lands.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Ning Zhao ◽  
Qi Li ◽  
Wenlei Guo ◽  
Lele Zhang ◽  
Lu’an Ge ◽  
...  

Shortawn foxtail is an invasive grass weed infesting winter wheat and canola production in China. A better understanding of the germination ecology of shortawn foxtail would help to develop better control strategies for this weed. Experiments were conducted under laboratory conditions to evaluate the effects of various abiotic factors, including temperature, light, pH, osmotic stress, salt concentration, and planting depth, on seed germination and seedling emergence of shortawn foxtail. The results showed that the seed germination rate was greater than 90% over a wide range of constant (5 to 25C) and alternating (15/5 to 35/25C) temperatures. Maximum germination occurred at 20C or 25/15C, and no germination occurred at 35C. Light did not appear to have any effect on seed germination. Shortawn foxtail germination was 27% to 99% over a pH range of 4 to 10, and higher germination was obtained at alkaline pH values ranging from 7 to 10. Seed germination was sensitive to osmotic potential and completely inhibited at an osmotic potential of −0.6 MPa, but it was tolerant to salinity: germination even occurred at 200 mM NaCl (5%). Seedling emergence was highest (98%) when seeds were placed on the soil surface but declined with the increasing burial depth. No seedlings emerged when seeds were buried 6-cm deep. Deep tillage could be an effective measure to limit seed germination from increased burial depth. The results of this study will lead to a better understanding of the requirements for shortawn foxtail germination and emergence and will provide information that could contribute to its control.


Weed Science ◽  
2018 ◽  
Vol 66 (6) ◽  
pp. 752-757 ◽  
Author(s):  
Gulshan Mahajan ◽  
Amar Matloob ◽  
Michael Walsh ◽  
Bhagirath S. Chauhan

AbstractAfrican turnipweed (Sisymbrium thellungiiO. E.Schulz) is an emerging problematic broadleaf weed of the northern grain region of Australia. Laboratory experiments were conducted to evaluate the effects of temperature, light, salinity, pH, seed burial depth, and the amount of wheat crop residue on germination and emergence of two AustralianS. thellungiiweed populations (population C, cropped area; population F, fence line). Both populations behaved similarly across different environmental conditions, except in the residue study. Although the seeds of both populations ofS. thellungiicould germinate under complete darkness, germination was best (~95%) under light/dark conditions at the 20/10 C temperature regime. Both populations ofS. thellungiigerminated over a wide range of day/night temperatures (15/5, 20/10, 25/15, and 30/20 C). Osmotic stress had negative effects on germination, with 54% seeds (averaged over populations) able to germinate at −0.1MPa. Complete germination inhibition for both populations was observed at −0.8MPa osmotic potential. Both populations germinated at sodium chloride (NaCl) concentrations ranging from 50 to 100 mM, beyond which germination was completely inhibited. There were substantial reductions in seed germination, 32% (averaged over populations) under highly acidic conditions (pH 4.0) as compared with the control (water: pH 6.4). Seed germination of both populations on the soil surface was 77%, and no seedlings emerged from a burial depth of 1 cm. The addition of 6 Mg ha−1of wheat (Triticum aestivumL.) residue reduced the emergence of the C and F populations ofS. thellungiiby 75% and 64%, respectively, as compared with the control (no residue). Information gathered from this study provides a better understanding of the factors favorable for germination and emergence ofS. thellungii, which will aid in developing management strategies in winter crops, especially wheat, barley (Hordeum vulgareL.), and chick pea (Cicer arietinumL.).


Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Gulshan Mahajan ◽  
Asheneel Prasad ◽  
Bhagirath Singh Chauhan

Abstract Sumatran fleabane [Conyza sumatrensis (Retz.) Walker] is an emerging weed in the Australian cropping region. Populations resistant to glyphosate have evolved in Australia, creating the demand for information regarding the seed germination ecology of glyphosate-resistant (R) and glyphosate susceptible (S) populations of C. sumatrensis. A study was conducted to examine the effect of temperature, light intensity, salt stress, osmotic stress, and burial depth on the germination and emergence of two populations (R and S) of C. sumatrensis. Both populations were able to germinate over a wide range of alternating day/night temperatures (15/5 to 35/25 C). In light/dark conditions, the R population had higher germination than the S population at 20/10 and 35/25 C. In the dark, the R population had higher germination than the S population at 25/15 C. In the dark, germination was inhibited at 30/20 C and above. Averaged over populations, seed germination of C. sumatrensis was reduced by 97% at zero light intensity (completely dark conditions) compared with full light intensity. Seed germination of C. sumatrensis reduced by 17 and 85% at an osmotic potential of −0.4, and −0.8 MPa, respectively, compared with the control treatment. The R population had lower germination (57%) than the S population (72%) at a sodium chloride concentration of 80 mM. Seed germination was highest on the soil surface and emergence was reduced by 87 and 90% at burial depths of 0.5 and 1.0 cm, respectively. Knowledge gained from this study suggests that a shallow-tillage operation to bury weed seeds in conventional tillage systems, and retention of high residue cover in a zero-till system on the soil surface may inhibit the germination of C. sumatrensis. This study also warrants that the R population may have a greater risk of invasion over a greater part of a year due to germination over a broader temperature range.


Weed Science ◽  
2006 ◽  
Vol 54 (5) ◽  
pp. 903-909 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Marcos J. Oliveira

Laboratory and greenhouse experiments were conducted to determine the effect of light, temperature, solution pH, solution osmotic potential, and oxygen concentration on sicklepod germination and radicle plus hypocotyl elongation and seeding depth on emergence. Scarified, nondormant sicklepod seeds were used for these experiments. Sicklepod germination was not influenced by red or far-red light nor was light required for germination, which averaged 81% over all light treatments. Sicklepod germinated over a range of constant temperatures from 15 to 50 C, with optimum germination between 15 and 30 C. Germination was optimal near pH 6 for temperatures of 15 and 30 C. Germination and radicle plus hypocotyl length decreased with decreasing solution osmotic potential, and no germination occurred at a solution osmotic potential of −0.75 MPa at 15 C during 7 d incubation. Germination was greater at 20% oxygen than at 2% oxygen. The mean emergence depth for sicklepod was 3.3 and 4.6 cm in a highly disturbed sand and sandy loam soil, respectively. Sicklepod emerged from a 10-cm depth in the sandy loam soil, but no emergence occurred in the sand soil at this depth.


Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 111-118 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Marcos J. Oliveira

Pitted morningglory seed were collected in the fall of 2003 from Blackville, SC, and 2004 from Pendleton, SC, to assess the effect of After-Ripening and burial on light and temperature requirements for germination. Pitted morningglory germination was evaluated over a 12-mo period after maturation. Germination was neither stimulated by red light or inhibited by far-red light, nor was it reversible by red or far-red light. Light was not essential for germination of buried seed. Direct exposure to sunlight prevented germination of recently mature seed, but not once seed had sufficiently after-ripened. Pitted morningglory was capable of germination in darkness over a wide range of constant and fluctuating temperatures immediately after maturation. Germination in response to temperature varied with time of year after maturation, with the population from Pendleton having increased germination in May. Thermal fluctuations increased germination of both populations at suboptimal temperatures. Thermal amplitude regulation of germination varied over time and appeared to play a more important role in germination of after-ripened seed than recently mature ones. The ecological significance of changes in germination requirements with After-Ripening is discussed.


Sign in / Sign up

Export Citation Format

Share Document