Effect of Mowing on Lateral Spread and Rhizome Growth of TroublesomePaspalumSpecies

Weed Science ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 486-490 ◽  
Author(s):  
Gerald M. Henry ◽  
Michael G. Burton ◽  
Fred H. Yelverton

The effect of mowing regime on lateral spread and rhizome growth of dallisgrass and bahiagrass was determined in field studies conducted in 2003 and 2004 in North Carolina over 5 mo. Treatments were selected to simulate mowing regimes common to intensively managed common bermudagrass turfgrass and include 1.3-, 5.2-, and 7.6-cm heights at frequencies of three, two, and two times per week, respectively. A nonmowed check was included for comparison. Lateral spread of dallisgrass was reduced 38 to 47% regardless of mowing regime when compared with the nonmowed check. Rhizome fresh weight of dallisgrass was reduced 49% in 2003 and 30% in 2004 when mowed at the 7.6-cm regime after 5 mo, whereas the 5.2-cm mowing regime caused a reduction of 31%. Rhizome fresh weight of dallisgrass was most negatively affected by the 1.3-cm regime, which caused reductions of 57% in 2003 and 37% in 2004. Lateral spread of bahiagrass was more strongly affected by mowing height and frequency than dallisgrass, with reductions of 21 to 27%, 40%, and 44 to 62% when mowed at 7.6, 5.2, and 1.3-cm regimes, respectively. Rhizome fresh weight of bahiagrass was reduced 24 to 33%, 55%, and 70 to 73% when mowed at 7.6, 5.2, and 1.3 cm, respectively. Based upon these results, areas mowed at a golf course rough height (≥ 5.2 cm) may be more conducive to bahiagrass spread, whereas dallisgrass may tolerate areas mowed at a fairway height (1.3 cm). Mowing at the shorter heights examined in this study clearly reduced the potential ofPaspalumspp. vegetative spread and may help to explain observed distributions ofPaspalumspp. infestations in bermudagrass turfgrass.

HortScience ◽  
2013 ◽  
Vol 48 (10) ◽  
pp. 1317-1319 ◽  
Author(s):  
Andrew J. Hephner ◽  
Tyler Cooper ◽  
Leslie L. Beck ◽  
Gerald M. Henry

The effect of mowing regimens on lateral spread of khakiweed (Alternanthera pungens Kunth) was determined through field studies conducted over a 3-month period in Texas during 2009 and 2010. Treatments were selected to simulate mowing regimens common to intensively managed common bermudagrass [Cynodon dactylon (L.) Pers.] turf and included heights of 1.3 cm (three times/wk), 2.5 cm (two times/week), and 5.1 cm (two times/week). A non-mowed control was included for comparison. Differences in lateral spread of khakiweed among mowing regimens were apparent 4 weeks after initial treatment (WAIT). However, plant diameter increased for all mowing regimens over the course of the trial. Khakiweed plants subjected to the 1.3-cm mowing regimen did not increase in diameter from Week 2 through Week 12, whereas the other two mowing regimens exhibited steady increases in plant diameter over the same time period. By 12 WAIT, non-mowed control plots measured 80.8 cm in diameter, whereas those maintained at 1.3 cm measured 55.3 cm. Comparatively, plants subjected to the 2.5- and 5.1-cm mowing regimens measured 64.7 and 68.8 cm, respectively. Therefore, khakiweed infestations may be more prevalent in bermudagrass mowing heights commonly used for golf course roughs, athletic fields, and home lawns (2.5 cm or greater). However, the production of a thick taproot high in carbohydrate content may enable khakiweed to regenerate from frequent defoliation common to fairway mowing regimes (2.5 cm or less). Adjustments in mowing height may not be enough to effectively reduce khakiweed populations in bermudagrass turf.


1996 ◽  
Vol 21 (1) ◽  
pp. 333-334
Author(s):  
P. T. Hertl ◽  
R. L. Brandenburg

2018 ◽  
Vol 32 (5) ◽  
pp. 586-591
Author(s):  
Samuel J. McGowen ◽  
Katherine M. Jennings ◽  
Sushila Chaudhari ◽  
David W. Monks ◽  
Jonathan R. Schultheis ◽  
...  

AbstractField studies were conducted in North Carolina to determine the critical period for Palmer amaranth control (CPPAC) in pickling cucumber. In removal treatments (REM), emerged Palmer amaranth were allowed to compete with cucumber for 14, 21, 28, or 35 d after sowing (DAS) in 2014 and 14, 21, 35, or 42 DAS in 2015, and cucumber was kept weed-free for the remainder of the season. In the establishment treatments (EST), cucumber was maintained free of Palmer amaranth by hand removal until 14, 21, 28, or 35 DAS in 2014 and until 14, 21, 35, or 42 DAS in 2015; after this, Palmer amaranth was allowed to establish and compete with the cucumber for the remainder of the season. The beginning and end of the CPPAC, based on 5% loss of marketable yield, was determined by fitting log-logistic and Gompertz equations to the relative yield data representing REM and EST, respectively. Season-long competition by Palmer amaranth reduced pickling cucumber yield by 45% to 98% and 88% to 98% during 2014 and 2015, respectively. When cucumber was planted on April 25, 2015, the CPPAC ranged from 570 to 1,002 heat units (HU), which corresponded to 32 to 49 DAS. However, when cucumber planting was delayed 2 to 4 wk (May 7 and May 21, 2014 and May 4, 2015), the CPPAC lasted from 100 to 918 HU (7 to 44 DAS). This research suggested that planting pickling cucumber as early as possible during the season may help to reduce competition by Palmer amaranth and delay the beginning of the CPPAC.


1990 ◽  
Vol 4 (2) ◽  
pp. 239-244 ◽  
Author(s):  
John W. Wilcut ◽  
Glenn R. Wehtje ◽  
T. Vint Hicks ◽  
Tracy A. Cole

Field studies were conducted from 1985 to 1987 to evaluate postemergence herbicide systems with preemergence systems to control Texas panicum, Florida beggarweed, sicklepod, and pitted morningglory in peanuts. Adding paraquat at 0.14 kg ai/ha to postemergence herbicide systems reduced fresh weight of Florida beggarweed 92% (18% increase over the same systems without paraquat), sicklepod 95% (21% increase), and pitted morningglory 95% (11% increase). Herbicide systems containing paraquat improved peanut yields by 230 kg/ha and net returns by $52/ha over herbicide systems not containing paraquat. Fluazifop-P and sethoxydim systems reduced Texas panicum fresh weight (at least 96%) more than a preemergence system (92% reduction) that used benefin applied preplant incorporated and alachlor plus naptalam and dinoseb applied at cracking (GC) or a postemergence system that used alachlor and naptalam plus dinoseb GC and paraquat applied early postemergence (86% reduction). Systems containing fluazifop-P provided greater yields (4190 kg/ha) and net returns ($383/ha) than systems containing sethoxydim (4010 kg/ha, $305/ha) when averaged across all rates of application.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 615-621 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
Gerald L. Wiley ◽  
F. Robert Walls

Field studies in 1990 and 1991 at six locations in Georgia and one location in North Carolina evaluated AC 263,222 for weed control, peanut tolerance, and yield. AC 263,222 applied early postemergence at 71 g ai ha−1controlled bristly starbur, coffee senna, common lambsquarters,Ipomoeaspecies, prickly sida, sicklepod, smallflower morningglory, and yellow nutsedge at least 91%. AC 263,222 controlled common cocklebur 77% and Florida beggarweed from 47 to 100%. Crop injury was 4% for AC 263,222 applied once and 12% or less from two applications. Mixtures of bentazon with AC 263,222 did not improve control compared to AC 263,222 alone. Imazethapyr did not improve control of AC 263,222 systems. In several locations, bentazon reduced control of Florida beggarweed with AC 263,222 when applied in a mixture compared to AC 263,222 alone. Weed control from the standard of paraquat plus bentazon applied early postemergence followed by paraquat, bentazon plus 2,4-DB applied POST did not provide the level or spectrum of weed control as AC 263,222 systems.


Weed Science ◽  
1982 ◽  
Vol 30 (5) ◽  
pp. 498-502 ◽  
Author(s):  
Jeffrey F. Derr ◽  
Thomas J. Monaco

In greenhouse studies, soil organic matter reduced the herbicidal activity of ethalfluralin (N-ethyl-N-(2-methyl-2-propenyl)-2,6-dinitro-4-(trifluoromethyl)benzenamine). Fifty percent inhibition (I5.0) values for barnyardgrass [Echinochloa crus-galli(L.) Beauv.] stand, injury, and shoot fresh weight increased as the soil organic-matter level increased. No difference in ethalfluralin tolerance was found among 16 cucumber (Cucumis sativusL.) cultivars. When grouped according to market type, fresh market cultivars tended to be injured more than pickling cultivars by excess ethalfluralin. Both shoots and roots of cucumber absorbed the herbicide, but exposure of roots to ethalfluralin was more toxic than exposure of shoots. Field studies indicated that with certain edaphic and environmental conditions, cucumbers can be injured by preemergence applications of ethalfluralin. Injury was greatest in a low organic-matter soil following a heavy rain. Ethalfluralin at 1.3 kg/ha gave adequate weed control in 1 and 3% organic-matter soils, but not in a 9% organic-matter soil.


1996 ◽  
Vol 21 (1) ◽  
pp. 332-333
Author(s):  
P. T. Hertl ◽  
R. L. Brandenburg

1995 ◽  
Vol 9 (2) ◽  
pp. 260-266 ◽  
Author(s):  
K. Neil Harker

Greenhouse and field experiments were conducted from 1987 to 1990 at the Lacombe Research Station to determine the influence of ammonium sulfate (AS) on various grass control herbicides. In field studies, AS had slight or no effects on the phytotoxicity of aryloxyphenoxypropanoate (APP) herbicides (fenoxaprop, fluazifop, haloxyfop, and quizalofop). The largest AS-mediated increase in APP herbicide phytotoxicity was 19% (based on fresh weight reduction) for wild oat with haloxyfop at 50 g/ha. AS consistently mediated increases in cyclohexanedione (CHD) herbicide phytotoxicity. With added AS, barley fresh weight was reduced 75% (1988) with BAS 517 at 50 g/ha, and 100% (1990) with clethodim at 25 g/ha. Greenhouse studies confirmed field studies, but differences were less substantial and consistent. It is suggested that APP herbicides are either less susceptible to UV degradation than CHD herbicides, and/or that APP herbicides may penetrate plant cuticles quickly enough to nullify any protection from UV degradation that AS might provide via rapid absorption.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 775-778 ◽  
Author(s):  
Prasanta C. Bhowmik ◽  
Krishna N. Reddy

Field studies were conducted to determine the effects of various barnyardgrass populations on growth, yield, and nutrient concentration of transplanted “Jetstar’ tomato. Barnyardgrass densities at 16, 32, and 64 plants/m tomato row were tested in 1982 and 1983. Barnyardgrass shoot fresh weights/unit area increased as density increased. Fresh weight of barnyardgrass shoots ranged from 17 100 kg/ha at 16 plants/m of row to 35 500 kg/ha at 64 plants/m of row. At the vegetative stage, tomato shoot dry weight was unaffected by barnyardgrass. As crop growth progressed, tomato shoot dry weight decreased at all barnyardgrass densities. Season-long interference of barnyardgrass reduced marketable tomato fruit number and fruit weight at all densities compared to weed-free plots. Reductions in marketable fruit weight ranged from 26% to 16 plants/m row to 84% at 64 plants/m row. In 1982, concentrations of N, P, K, Ca, and Mg in tomato shoots were unaffected by season-long interference of barnyardgrass at all densities. However, in 1983, concentrations of N and K decreased and concentration of P increased in tomato leaves as the density of barnyardgrass increased. Concentrations of Ca and Mg in tomato leaves were unaltered by barnyardgrass density.


2020 ◽  
Vol 34 (4) ◽  
pp. 547-551 ◽  
Author(s):  
Stephen C. Smith ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Sushila Chaudhari ◽  
Jonathan R. Schultheis ◽  
...  

AbstractPalmer amaranth is the most common and troublesome weed in North Carolina sweetpotato. Field studies were conducted in Clinton, NC, in 2016 and 2017 to determine the critical timing of Palmer amaranth removal in ‘Covington’ sweetpotato. Palmer amaranth was grown with sweetpotato from transplanting to 2, 3, 4, 5, 6, 7, 8, and 9 wk after transplanting (WAP) and maintained weed-free for the remainder of the season. Palmer amaranth height and shoot dry biomass increased as Palmer amaranth removal was delayed. Season-long competition by Palmer amaranth interference reduced marketable yields by 85% and 95% in 2016 and 2017, respectively. Sweetpotato yield loss displayed a strong inverse linear relationship with Palmer amaranth height. A 0.6% and 0.4% decrease in yield was observed for every centimeter of Palmer amaranth growth in 2016 and 2017, respectively. The critical timing for Palmer amaranth removal, based on 5% loss of marketable yield, was determined by fitting a log-logistic model to the relative yield data and was determined to be 2 WAP. These results show that Palmer amaranth is highly competitive with sweetpotato and should be managed as early as possible in the season. The requirement of an early critical timing of weed removal to prevent yield loss emphasizes the importance of early-season scouting and Palmer amaranth removal in sweetpotato fields. Any delay in removal can result in substantial yield reductions and fewer premium quality roots.


Sign in / Sign up

Export Citation Format

Share Document