Factors Affecting Germination and Emergence of Dame's Rocket (Hesperis matronalis)

Weed Science ◽  
2008 ◽  
Vol 56 (3) ◽  
pp. 389-393 ◽  
Author(s):  
David J. Susko ◽  
Yara Hussein

Laboratory experiments were conducted to determine the effects of temperature, light, cold stratification, dry storage, solution pH, solution osmotic potential, and planting depth on germination and emergence of dame's rocket. Maximal germination (> 80%) of fresh seeds occurred at alternating temperatures ≥ 25/15 C in both alternating light/dark and continuous darkness. However, < 10% of seeds germinated at or below 20/10 C, with lower germination in the presence of light than in darkness. Cold stratification at 4 C for 4 to 16 wk enhanced germination at low alternating temperatures (≤ 20/10 C), but depressed germination at warm temperature regimes (≥ 25/15 C). After 1 yr of dry storage (after-ripening), germination exceeded 94% and did not differ significantly among temperature regimes. Germination exceeded 60% in solutions with pH 3 to 10. Germination was reduced below 50% in solutions with osmotic potentials below −0.6 MPa. Percent emergence was greater than 56% at burial depths in soil of 0 to 5 cm, with maximal emergence (93 to 99%) at 0 to 2 cm. Dame's rocket seeds possess non-deep physiological dormancy at maturity, but when dormancy is alleviated, the seeds are capable of germinating in a variety of climatic and edaphic conditions.

2020 ◽  
Vol 30 (3) ◽  
pp. 199-205
Author(s):  
Tracy S. Hawkins

AbstractQuercus species are ecologically and economically important components of deciduous forests of the eastern United States. However, knowledge pertinent to a thorough understanding of acorn germination dynamics for these species is lacking. The objectives of this research were to determine dormancy break and germination requirements for acorns of two eastern United States bottomland species, Quercus nigra and Quercus phellos (Section Lobatae), and to present results within ecological and phylogenetic contexts. Three replicates of 50 acorns of each species received 0 (control), 6, 12 or 18 weeks of cold stratification, followed by incubation in alternating temperature regimes of 15/6, 20/10, 25/15 and 30/20°C. Eighteen weeks of cold stratification were not sufficient for dormancy break in Q. nigra acorns. Cumulative germination percentages at 4 weeks of incubation were ≥77%, but only in incubation temperatures of 25/15 and 30/20°C. Dormancy break in Q. phellos acorns was achieved with 18 weeks of cold stratification, and cumulative germination percentages were ≥87% at 4 weeks of incubation in all test temperature regimes. Gibberellic acid solutions were not an effective substitute for cold stratification in either species. Phylogenetically, Q. nigra and Q. phellos are closely related species and, ecologically, both grow in the same habitat. Acorns of both species possess deep physiological dormancy (PD), but dormancy break and germination requirements differ in acorns of these two Quercus species.


1995 ◽  
Vol 35 (6) ◽  
pp. 771 ◽  
Author(s):  
HJ Ogle ◽  
AM Stirling ◽  
PJ Dart

The effects of temperature and cultivar on disease development in cotton were investigated in addition to the duration of susceptibility to infection and the timing of infection by Pythium ultimum and Rhizoctonia solani. Symptom development was also monitored. Disease was more severe at day/night temperature regimes of 20/15, 25/20, and 30/25�C than at 35/30�C. Disease development differed significantly between cotton cvv. Deltapine 90 and Siokra 1-4 at 30/25�C and 35/30�C. In glasshouse trials in field soil, both R. solani and P ultimum were isolated from seeds as early as 2 h after inoculation, although most seeds were not infected with P. ultimum until 10 h after inoculation and with R. solani until 24 h after inoculation. Increasing the duration of exposure to inoculum increased the number of seeds infected and reduced the number of plants surviving. Seedlings were resistant to P. ultimum infection by 14 days after sowing but were not resistant to infection by R. solani until 28 days after sowing.


Botany ◽  
2017 ◽  
Vol 95 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Danping Song ◽  
Ganesh K. Jaganathan ◽  
Yingying Han ◽  
Baolin Liu

There are several different opinions regarding dormancy in tea (Camellia sinensis L.), but there is no strong evidence available to conclude whether or not these seeds are dormant. Freshly matured tea seeds collected from Hangzhou, China, at the natural dispersal time did not germinate in light at daily alternative temperature regimes of 10/15, 15/20, 20/25, or 25/35 °C, or at a constant temperature of 25 °C. Seeds were permeable to water and the embryos did not grow prior to radicle emergence, thus, the seeds have no physical, morphological, or morphophysiological dormancy. When cold-stratified at 4 °C for 1, 2, and 3 months, 64%, 88%, and 93% of the seeds germinated, respectively. Intact fresh seeds failed to germinate after treatment with 0, 10, 500, and 1000 ppm GA3, whereas 3%, 4%, 61%, and 86% of cracked seeds germinated, respectively. Thus, the seeds have nondeep and intermediate physiological dormancy. Seeds cold-stratified for 2 months that were buried at soil depths of 0, 1, and 5 cm in pots showed that seeds at 1 cm depth established significantly higher number of seedlings (P < 0.05) than at other two depths. Because tea seeds are susceptible to summer temperature drying, these seeds do not establish a persistent seed bank.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3671 ◽  
Author(s):  
Hong-Ling Wang ◽  
Chang-Yan Tian ◽  
Lei Wang

Cold stratification is a requirement for seed dormancy breaking in many species, and thus it is one of the important factors for the regulation of timing of germination. However, few studies have examined the influence of various environmental conditions during cold stratification on subsequent germination, and no study has compared such effects on the performance of dormant versus non-dormant seeds. Seeds of halophytes in the cold desert might experience different light and salinity conditions during and after cold stratification. As such, dimorphic seeds (non-dormant brown seeds and black seeds with non-deep physiological dormancy) of Suaeda aralocaspica were cold stratified under different light (12 h light–12 h darkness photoperiod or continuous darkness) or salinity (0, 200 or 1,000 mmol L-1 NaCl) conditions for 20 or 40 days. Then stratified seeds were incubated under different light or salinity conditions at daily (12/12 h) temperature regime of 10:25 °C for 20 days. For brown seeds, cold stratification was also part of the germination period. In contrast, almost no black seeds germinated during cold stratification. The longer the cold stratification, the better the subsequent germination of black seeds, regardless of light or salinity conditions. Light did not influence germination of brown seeds. Germination of cold-stratified black seeds was inhibited by darkness, especially when they were stratified in darkness. With an increase in salinity at the stage of cold stratification or germination, germination percentages of both seed morphs decreased. Combinational pre-treatments of cold stratification and salinity did not increase salt tolerance of dimorphic seeds in germination phase. Thus, light and salinity conditions during cold stratification partly interact with these conditions during germination stage and differentially affect germination of dimorphic seeds of S. aralocaspica.


1997 ◽  
Vol 7 (3) ◽  
pp. 311-318 ◽  
Author(s):  
Jeffrey L. Walck ◽  
Jerry M. Baskin ◽  
Carol C. Baskin

AbstractThe effect of dry storage under ambient laboratory conditions on after-ripening and survivorship was tested on seeds of the geographically-widespreadSolidago altissimaand S.nemoralisand the narrow-endemicS. shortii. Freshly-matured seeds ofS. altissimacollected in 1991 and in 1992 germinated to low or moderate percentages in light at 15/6, 20/10 and 25/15°C and to high percentages at 30/15 and 35/20°C, whereas those ofS. nemoralisandS. shortiigerminated to low percentages over the range of temperature regimes. After 0.8–1.8 years of storage, 1991 seeds ofS. altissimaincubated in light germinated to high percentages at 25/15, 30/15 and 35/20°C, those ofS. nemoralisdid so at 30/15 and 35/20°C and those ofS. shortiiat 20/10, 25/15, 30/15 and 35/20°C; 1992 seeds of all three species germinated to high percentages at 20/10, 25/15, 30/15 and 35/20°C. Freshly-matured 1991 and 1992 seeds of the three species germinated to low percentages in darkness over the range of temperature regimes, and only seeds ofS. shortiigerminated to high percentages after 0.8–1.8 years of storage. Compared with cold stratification, dry storage was only moderately effective in breaking dormancy in these three species. The primary difference in after-ripening of seeds of the three species was that seeds of the narrow endemic germinated to higher percentages in darkness than those of its two geographically-widespread congeners. Survivorship curves for 1991 and 1992 seeds ofS. altissimaandS. nemoralisand for 1992 seeds ofS. shortiiwere of Deevey Type I; the survivorship curve for 1991 seeds ofS. shortiiwas closest to Type II. Longevity of 1991 seeds ofS. altissima, 1992 seeds ofS. nemoralisand 1991 and 1992 seeds ofS. shortiiwas <4.0 years, whereas that of 1991 seeds ofS. nemoraliswas <2.3 years; 5% of 1992 seeds ofS. altissimawere viable after 4.0 years.


Weed Science ◽  
1999 ◽  
Vol 47 (5) ◽  
pp. 585-588 ◽  
Author(s):  
David J. Susko ◽  
J. Paul Mueller ◽  
Janet F. Spears

Laboratory and greenhouse studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of the invasive weedPueraria lobata(kudzu). Germination occurred over a range of alternating temperatures from 15/6 to 35/25 C. Seed germinated equally well in alternating light/darkness and continuous darkness. At all temperature regimes, percentage germination was much greater for hand-scarified seed (95 to 100%) than for nonscarified seed (7 to 17%), indicating thatP. lobataseed possesses physical dormancy. Germination exceeded 51% in solutions with pH 5 to 9. Maximum germination (99%) was observed in distilled water at pH 5.4. Germination was greatly reduced in solutions with osmotic potentials below −0.4 MPa (28% at −0.6 MPa, and 13% at −0.9 MPa); no germination was observed at −1.3 MPa. Percentage emergence was greater than 45% at burial depths in soil of 0.5 to 10 cm, with maximal emergence (72 to 85%) at depths of 0.5 to 4 cm. Seed sown on the soil surface had low seedling emergence (< 13%). No seedlings emerged when seed was exposed to flooding for 7 d or more.Pueraria lobataseed is capable of germinating in a variety of climatic and edaphic conditions, but flooding may severely limit establishment of stands by seed.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noémie Deldicq ◽  
Dewi Langlet ◽  
Camille Delaeter ◽  
Grégory Beaugrand ◽  
Laurent Seuront ◽  
...  

AbstractHeatwaves have increased in intensity, duration and frequency over the last decades due to climate change. Intertidal species, living in a highly variable environment, are likely to be exposed to such heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however, on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here, we examine how temperature influences motion-behaviour and metabolic traits of the dominant temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C) and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced their activity by up to 80% under high temperature regimes whereas they remained active under the temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C), all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica contribution to surface sediment reworking substantially diminished from 10 mm3 indiv−1 day−1 (usual temperature) to 0 mm3 indiv−1 day−1 when individuals were exposed to high temperature regimes (i.e. above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy ecosystems and some key biogeochemical cycles.


2014 ◽  
Vol 78 (6) ◽  
pp. 1473-1477
Author(s):  
Jan Přikryl ◽  
Andri Stefánsson

The interaction of CO2-rich water with olivine was studied using geochemical reaction modelling in order to gain insight into the effects of temperature, acid supply (CO2) and extent of reaction on the secondary mineralogy, water chemistry and mass transfer. Olivine (Fo93) was dissolved at 150 and 250ºC and pCO2 of 2 and 20 bar in a closed system and an open system with secondary minerals allowed to precipitate. The progressive water–rock interaction resulted in increased solution pH, with gradual carbonate formation starting at pH 5 and various Mg-OH and Mg-Si minerals becoming dominant at pH>8. The major factor determining olivine alteration is the pH of the water. In turn, the pH value is determined by acid supply, reaction progress and temperature.


Sign in / Sign up

Export Citation Format

Share Document