Rapid Evolution of Herbicide Resistance by Low Herbicide Dosages

Weed Science ◽  
2011 ◽  
Vol 59 (2) ◽  
pp. 210-217 ◽  
Author(s):  
Sudheesh Manalil ◽  
Roberto Busi ◽  
Michael Renton ◽  
Stephen B. Powles

Herbicide rate cutting is an example of poor use of agrochemicals that can have potential adverse implications due to rapid herbicide resistance evolution. Recent laboratory-level studies have revealed that herbicides at lower-than-recommended rates can result in rapid herbicide resistance evolution in rigid ryegrass populations. However, crop-field-level studies have until now been lacking. In this study, we examined the impact of low rates of diclofop on the evolution of herbicide resistance in a herbicide-susceptible rigid ryegrass population grown either in a field wheat crop or in potted plants maintained in the field. Subsequent dose–response profiles indicated rapid evolution of diclofop resistance in the selected rigid ryegrass lines from both the crop-field and field pot studies. In addition, there was moderate level of resistance in the selected lines against other tested herbicides to which the population has never been exposed. This resistance evolution was possible because low rates of diclofop allowed substantial rigid ryegrass survivors due to the potential in this cross-pollinated species to accumulate all minor herbicide resistance traits present in the population. The practical lesson from this research is that herbicides should be used at the recommended rates that ensure high weed mortality to minimize the likelihood of minor herbicide resistance traits leading to rapid herbicide resistance evolution.

2009 ◽  
Vol 23 (3) ◽  
pp. 363-370 ◽  
Author(s):  
Hugh J. Beckie ◽  
Xavier Reboud

Herbicide rotations and mixtures are widely recommended to manage herbicide resistance. However, little research has quantified how these practices actually affect the selection of herbicide resistance in weeds. A 4-yr experiment was conducted in western Canada from 2004 to 2007 to examine the impact of herbicide rotation and mixture in selecting for acetolactate synthase (ALS) inhibitor resistance in the annual broadleaf weed, field pennycress, co-occurring in wheat. Treatments consisted of the ALS-inhibitor herbicide, ethametsulfuron, applied in a mixture with bromoxynil/MCPA formulated herbicide (photosystem-II inhibitor/synthetic auxin), or in rotation with the non-ALS inhibitor at an ALS-inhibitor application frequency of 0, 25, 50, 75, and 100% (i.e., zero to four applications, respectively) over the 4-yr period. The field pennycress seed bank at the start of the experiment contained 5% ethametsulfuron-resistant seed. Although weed control was only marginally reduced, resistance frequency of progeny of survivors increased markedly after one ALS-inhibitor application. At the end of the experiment, the level of resistance in the seed bank was buffered by susceptible seed, increasing from 29% of recruited seedlings after one application to 85% after four applications of the ALS inhibitor. The level of resistance in the seed bank for the mixture treatment after 4 yr remained similar to that of the nontreated (weedy) control or 0% ALS-inhibitor rotation frequency treatment. The results of this study demonstrate how rapidly ALS-inhibitor resistance can evolve as a consequence of repeated application of herbicides with this site of action, and supports epidemiological information from farmer questionnaire surveys and modeling simulations that mixtures are more effective than rotations in mitigating resistance evolution through herbicide selection.


2010 ◽  
Vol 24 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Mechelle J. Owen ◽  
Stephen B. Powles

Glyphosate-resistance evolution in weeds is evident globally, especially in areas where transgenic glyphosate-resistant crops dominate. Resistance to glyphosate is currently known in 16 weed species, including rigid ryegrass in Australia. Following the first report of glyphosate resistance in 1998, there are now 78 documented glyphosate-resistant populations of rigid ryegrass in grain-growing regions of southern Australia. In some regions where glyphosate-resistance evolution has already occurred in rigid ryegrass, transgenic glyphosate-resistant canola was introduced in 2008, further highlighting the need to monitor glyphosate-resistance evolution in weeds. A rigid ryegrass population (WALR70) was collected in 2005 from a crop field in Esperance, Western Australia, after it had survived applications of glyphosate. Dose–response experiments confirmed resistance in the population, with the glyphosate rate resulting in 50% mortality (LD50) for WALR70 being 11 times greater than that for a susceptible biotype. The WALR70 population also had low levels of resistance to some acetyl coenzyme A carboxylase (ACCase)- and acetolactate synthase (ALS)-inhibiting herbicides (diclofop, fluazifop, clodinafop, tralkoxydim, chlorsulfuron, and imazethapyr), but was susceptible to other herbicide modes of action, such as atrazine, trifluralin, and paraquat. Two other rigid ryegrass populations assessed in this study were also confirmed to be resistant to glyphosate. The increasing number of glyphosate-resistant rigid ryegrass populations in Australia is of concern to growers because of the importance of glyphosate in intensive cropping systems and the introduction of glyphosate-resistant canola to this region.


Weed Science ◽  
2018 ◽  
Vol 66 (3) ◽  
pp. 395-403 ◽  
Author(s):  
Gayle J. Somerville ◽  
Stephen B. Powles ◽  
Michael J. Walsh ◽  
Michael Renton

AbstractHarvest weed seed control (HWSC) techniques have been implemented in Australian cropping systems to target and reduce the number of weed seeds entering the seedbank and thereby reduce the number of problematic weeds emerging in subsequent years to infest subsequent crops. However, the influence of HWSC on ameliorating herbicide-resistance (HR) evolution has not been investigated. This research used integrated spatial modeling to examine how the frequency and efficacy of HWSC affected the evolution of resistance to initially effective herbicides. Herbicides were, in all cases, better protected from future resistance evolution when their use was combined with annual HWSC. Outbreaks of multiple HR were very unlikely to occur and were nearly always eliminated by adding annual, efficient HWSC. The efficacy of the HWSC was important, with greater reductions in the number of resistance genes achieved with higher-efficacy HWSC. Annual HWSC was necessary to protect sequences of lower-efficacy herbicides, but HWSC could still protect herbicides if it was used less often than once per year, when the HWSC and the herbicides were highly effective. Our results highlight the potential benefits of combining HWSC with effective herbicides for controlling weed populations and reducing the future evolution of HR.


2005 ◽  
Vol 75 (4) ◽  
pp. 25-35 ◽  
Author(s):  
M. Jasieniuk ◽  
B.D. Maxwell

Numerous factors, including mutation, selection, inheritance, mating System, and gene flow are important in the evolution of herbicide resistance in weeds. Spontaneous gene mutation is believed to be the main source of genetic variation for resistance evolution in a geographic region in which resistance has not been detected previously. Despite mutation frequencies that are probably very low, the probability of occurrence of at least a single resistant mutant in a susceptible population may be high for weed species with high fecundities and large population sizes. Subsequent repeated treatments with herbicides having the same mode of action could lead to the rapid evolution of predominantly resistant populations. Rare dominantly inherited resistance mutations spread significantly more rapidly than recessive mutations in random mating populations, but at roughly the same rate in highly self-fertilizing species. Gene flow, through the movement of pollen or seed from resistant weed populations, may provide a source of resistance alleles to adjacent or nearby susceptible fields. Mathematical models indicate that the strength of selection imposed by a herbicide and the initial frequency of the resistant phenotype most strongly influence the rate of resistance evolution. The models predict that the most effective strategies to manage resistance are to reduce the intensity of selection by herbicide and to limit the migration of herbicide-resistant seed.


Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 24
Author(s):  
Marino Costa-Santos ◽  
Nuno Mariz-Ponte ◽  
Maria Celeste Dias ◽  
Luísa Moura ◽  
Guilhermina Marques ◽  
...  

Plant-growth-promoting bacteria (PGPB) are gaining attention as a sustainable alternative to current agrochemicals. This study evaluated the impact of three Bacillus spp. (5PB1, 1PB1, FV46) and one Brevibacillus sp. (C9F) on the important crop tomato (Solanum lycopersicum) using the model cv. ‘MicroTom’. The effects of these isolates were assessed on (a) seedlings’ growth and vigor, and (b) adult potted plants. In potted plants, several photosynthetic parameters (chlorophylls (a and b), carotenoids and anthocyanins contents, transpiration rate, stomatal conductance, net CO2 photosynthetic rate, and intercellular CO2 concentration, and on chlorophyll fluorescence yields of light- and dark-adapted leaves)), as well as soluble sugars and starch contents, were quantified. Additionally, the effects on redox status were evaluated. While the growth of seedlings was, overall, not influenced by the strains, some effects were observed on adult plants. The Bacillus safensis FV46 stimulated the content of pigments, compared to C9F. Bacillus zhangzhouensis 5PB1 increased starch levels and was positively correlated with some parameters of the photophosphorylation and the gas exchange phases. Interestingly, Bacillus megaterium 1PB1 decreased superoxide (O2−) content, and B. safensis FV46 promoted non-enzymatic antioxidant defenses, increasing total phenol content levels. These results, conducted on a model cultivar, support the theory that these isolates differently act on tomato plant physiology, and that their activity depends on the age of the plant, and may differently influence photosynthesis. It would now be interesting to analyze the influence of these bacteria using commercial cultivars.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Magdalena Murawska ◽  
Dimitris Rizopoulos ◽  
Emmanuel Lesaffre

In transplantation studies, often longitudinal measurements are collected for important markers prior to the actual transplantation. Using only the last available measurement as a baseline covariate in a survival model for the time to graft failure discards the whole longitudinal evolution. We propose a two-stage approach to handle this type of data sets using all available information. At the first stage, we summarize the longitudinal information with nonlinear mixed-effects model, and at the second stage, we include the Empirical Bayes estimates of the subject-specific parameters as predictors in the Cox model for the time to allograft failure. To take into account that the estimated subject-specific parameters are included in the model, we use a Monte Carlo approach and sample from the posterior distribution of the random effects given the observed data. Our proposal is exemplified on a study of the impact of renal resistance evolution on the graft survival.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 263
Author(s):  
Ayako Wada-Katsumata ◽  
Coby Schal

Saliva has diverse functions in feeding behavior of animals. However, the impact of salivary digestion of food on insect gustatory information processing is poorly documented. Glucose-aversion (GA) in the German cockroach, Blattella germanica, is a highly adaptive heritable behavioral resistance trait that protects the cockroach from ingesting glucose-containing-insecticide-baits. In this study, we confirmed that GA cockroaches rejected glucose, but they accepted oligosaccharides. However, whereas wild-type cockroaches that accepted glucose also satiated on oligosaccharides, GA cockroaches ceased ingesting the oligosaccharides within seconds, resulting in significantly lower consumption. We hypothesized that saliva might hydrolyze oligosaccharides, releasing glucose and terminating feeding. By mixing artificially collected cockroach saliva with various oligosaccharides, we demonstrated oligosaccharide-aversion in GA cockroaches. Acarbose, an alpha-glucosidase inhibitor, prevented the accumulation of glucose and rescued the phagostimulatory response and ingestion of oligosaccharides. Our results indicate that pre-oral and oral hydrolysis of oligosaccharides by salivary alpha-glucosidases released glucose, which was then processed by the gustatory system of GA cockroaches as a deterrent and caused the rejection of food. We suggest that the genetic mechanism of glucose-aversion support an extended aversion phenotype that includes glucose-containing oligosaccharides. Salivary digestion protects the cockroach from ingesting toxic chemicals and thus could support the rapid evolution of behavioral and physiological resistance in cockroach populations.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 321
Author(s):  
Stefan Cristian Prazaru ◽  
Giulia Zanettin ◽  
Alberto Pozzebon ◽  
Paola Tirello ◽  
Francesco Toffoletto ◽  
...  

Outbreaks of the Nearctic leafhopper Erasmoneura vulnerata represent a threat to vinegrowers in Southern Europe, in particular in North-eastern Italy. The pest outbreaks are frequent in organic vineyards because insecticides labeled for organic viticulture show limited effectiveness towards leafhoppers. On the other hand, the naturally occurring predators and parasitoids of E. vulnerata in vineyards are often not able to keep leafhopper densities at acceptable levels for vine-growers. In this study, we evaluated the potential of two generalist, commercially available predators, Chrysoperla carnea and Orius majusculus, in suppressing E. vulnerata. Laboratory and semi-field experiments were carried out to evaluate both species’ predation capacity on E. vulnerata nymphs. The experiments were conducted on grapevine leaves inside Petri dishes (laboratory) and on potted and caged grapevines (semi-field); in both experiments, the leaves or potted plants were infested with E. vulnerata nymphs prior to predator releases. Both predator species exhibited a remarkable voracity and significantly reduced leafhopper densities in laboratory and semi-field experiments. Therefore, field studies were carried out over two growing seasons in two vineyards. We released 4 O. majusculus adults and 30 C. carnea larvae per m2 of canopy. Predator releases in vineyards reduced leafhopper densities by about 30% compared to the control plots. Results obtained in this study showed that the two predators have a potential to suppress the pest density, but more research is required to define appropriate predator–prey release ratios and release timing. Studies on intraguild interactions and competition with naturally occurring predators are also suggested.


2016 ◽  
Author(s):  
X. Long ◽  
X. X. Tie ◽  
J. J. Cao ◽  
R. J. Huang ◽  
T. Feng ◽  
...  

Abstract. Crop field burning (CFB) has important effects on air pollution in China, but it is seldom quantified and reported in a regional scale, which is of great importance for the control strategies of CFB in China, especially in the North China Plain (NCP). With the provincial statistical data and open crop fires captured by satellite (MODIS), we extracted a detailed emission inventory of CFB during a heavy haze event from 6th to 12th October 2014. A regional dynamical and chemical model (WRF-Chem) was applied to investigate the impact of CFB on air pollution in NCP. The model simulations were compared with the in situ measurements of PM2.5 (particular matter with radius less than 2.5 μm) concentrations. The model evaluation shows that the correlation coefficients (R) between measured and calculated values exceeds 0.80 and absolute normalized mean bias (NMB) is no more than 14 %. In addition, the simulated meteorological parameters such as winds and planetary boundary layer height (PBLH) are also in good agreement with observations. The model was intensive used to study (1) the impacts of CFB and (2) the effect of mountains on regional air quality. The results show that the CFB occurred in southern NCP (SNCP) had significant effect on PM2.5 concentrations locally, causing a maximum of 35 % PM2.5 increase in SNCP. Because of south wind condition, the CFB pollution plume is subjective a long transport to northern NCP (NNCP-with several mega cities, including Beijing of the capital city in China), where there are no significant CFB occurrences, causing a maximum of 32 % PM2.5 increase in NNCP. As a result, the heavy haze in Beijing is enhanced by the CFB occurred in SNCP. Further more, there are two major mountains located in the western and northern NCP. Under the south wind condition, these mountains play important roles in enhancing the PM2.5 pollution in NNCP through the blocking and guiding effects. This study suggests that the PM2.5 emissions in SNCP region should be significantly limited in order to reduce the occurrences of heavy haze events in NNCP region, including the Beijing City.


Sign in / Sign up

Export Citation Format

Share Document