Genetic Diversity of Rice vampireweed (Rhamphicarpa fistulosa) Populations in Rainfed Lowland Rice in West Africa

Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 430-440
Author(s):  
Norliette Zossou ◽  
Hubert Adoukonèou-Sagbadja ◽  
Daniel Fonceka ◽  
Lamine Baba-Moussa ◽  
Mbaye Sall ◽  
...  

Rice vampireweed belongs to the Orobanchaceae and is found in Africa and Australia. It is a hemiparasitic weed of lowland rice genotypes and causes losses of 40 to 100% of rice grain yield. Our study addressed the genetic diversity of rice vampireweed in Benin and Senegal. The specific objectives of this research were to study the genetic diversity of rice vampireweed accessions in Benin and Senegal and the relationship between the different genotypes of rice vampireweed through agroecological areas. To achieve these objectives, the genetic diversity of rice vampireweed accessions using the AFLP technique was studied. Based on our results, dendrogram classification has distinguished four different genetic groups. The populations of Benin and Senegal are genetically diverse. Substantial genetic differentiation (GST) exists among agroecological areas within Benin and Senegal (GST = 0.17). The high genetic diversity of rice vampireweed in Benin and Senegal presents a challenge for the development of resistant rice germplasm.

Author(s):  
S. Singh ◽  
S. Sarkarung ◽  
R. K. Singh ◽  
O. N. Singh ◽  
A. K. Singh ◽  
...  

2013 ◽  
Vol 73 (2) ◽  
pp. 142
Author(s):  
L. Behera ◽  
S. Mohanty ◽  
S. K. Pradhan ◽  
S. Singh ◽  
O. N. Singh ◽  
...  

2017 ◽  
Vol 13 (1) ◽  
pp. 28-34
Author(s):  
Ram Kumar Shrestha ◽  
Sita Paudel ◽  
Samjhana Wagle ◽  
Salikram Ghimire ◽  
Deepak Yadav

BMC Genetics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Cun Chen ◽  
Yanguang Chu ◽  
Changjun Ding ◽  
Xiaohua Su ◽  
Qinjun Huang

Abstract Background Black cottonwood (Populus deltoides) is one of the keystone forest tree species, and has become the main breeding parents in poplar hybrid breeding. However, the genetic diversity and population structure of the introduced resources are not fully understood. Results In the present study, five loci containing null alleles were excluded and 15 pairs of SSR (simple sequence repeat) primers were used to analyze the genetic diversity and population structure of 384 individuals from six provenances (Missouri, Iowa, Washington, Louisiana, and Tennessee (USA), and Quebec in Canada) of P. deltoides. Ultimately, 108 alleles (Na) were detected; the expected heterozygosity (He) per locus ranged from 0.070 to 0.905, and the average polymorphic information content (PIC) was 0.535. The provenance ‘Was’ had a relatively low genetic diversity, while ‘Que’, ‘Lou’, and ‘Ten’ provenances had high genetic diversity, with Shannon’s information index (I) above 1.0. The mean coefficient of genetic differentiation (Fst) and gene flow (Nm) were 0.129 and 1.931, respectively. Analysis of molecular variance (AMOVA) showed that 84.88% of the genetic variation originated from individuals. Based on principal coordinate analysis (PCoA) and STRUCTURE cluster analysis, individuals distributed in the Mississippi River Basin were roughly classified as one group, while those distributed in the St. Lawrence River Basin and Columbia River Basin were classified as another group. The cluster analysis based on the population level showed that provenance ‘Iow’ had a small gene flow and high degree of genetic differentiation compared with the other provenances, and was classified into one group. There was a significant relationship between genetic distance and geographical distance. Conclusions P. deltoides resources have high genetic diversity and there is a moderate level of genetic differentiation among provenances. Geographical isolation and natural conditions may be the main factors causing genetic differences among individuals. Individuals reflecting population genetic information can be selected to build a core germplasm bank. Meanwhile, the results could provide theoretical support for the scientific management and efficient utilization of P. deltoides genetic resources, and promote the development of molecular marker-assisted breeding of poplar.


2013 ◽  
Vol 76 (8) ◽  
pp. 1447-1450 ◽  
Author(s):  
BARBARA NIEVA-ECHEVARRIA ◽  
IRATI MARTINEZ-MALAXETXEBARRIA ◽  
CECILIA GIRBAU ◽  
RODRIGO ALONSO ◽  
AURORA FERNÁNDEZ-ASTORGA

The bacterial contamination of food products can cause serious public health problems. Interest in Arcobacter contamination has increased due to the relationship between these bacteria and human enteritis. We studied the prevalence and genetic diversity of Arcobacter species at the retail level in the province of Alava in Basque Country, Spain. The results showed a high genetic diversity and indicated the regular presence of the main Arcobacter spp. associated with human enteric illness in food products. Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii were detected with an overall prevalence close to 40% and were isolated from 15 (42.8%) fresh cow's milk samples, 12 (73.3%) shellfish samples, 11 (55%) chicken samples, 2 (10%) pork samples, and 1 (5%) beef sample. The results indicate the need to investigate the impact of Arcobacter spp. on public health.


2021 ◽  
Author(s):  
Tanzeem Fatima ◽  
Ashutosh Srivastava ◽  
Vageeshbabu S Hanur ◽  
M. Srinivasa Rao

Sandalwood (Santalum album L.) is highly valued aromatic tropical tree. It is known for its high quality heartwood and oil. In this study 39 genic and genomic SSR markers were used to analyze the genetic diversity and population structure of 177 S. album accessions from 14 populations of three states in India. High genetic diversity was observed in terms of number of alleles 127 expected heterozygosity (He) ranged from 0.63-0.87 and the average PIC was 0.85. The selected population had relatively high genetic diversity with Shannons information index (I) >1.0. 0.02 mean coefficient of genetic differentiation (FST) and 10.55 gene flow were observed. AMOVA revealed that 92% of the variation observed within individuals. Based on cluster and Structure result individuals were not clustered as per their geographical origin. Furthermore the clusters were clearly distinguished by principal component analysis analysis and the result revealed that PC1 reflected the moderate contribution in genetic variation (6%) followed by PC2 (5.5%). From this study, high genetic diversity and genetic differentiation was found in S. album populations. The genetic diversity information of S. album populations can be used for selection of superior genotypes and germplasm conservation to promote the tree improvement of S. album populations.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yubing Hu ◽  
Lin Wang ◽  
Huguette Gaelle Ngassa Mbenda ◽  
Myat Thu Soe ◽  
Chunyun Yu ◽  
...  

Abstract Background Merozoite proteins of the malaria parasites involved in the invasion of red blood cells are selected by host immunity and their diversity is greatly influenced by changes in malaria epidemiology. In the Greater Mekong Subregion (GMS), malaria transmission is concentrated along the international borders and there have been major changes in malaria epidemiology with Plasmodium vivax becoming the dominant species in many regions. Here, we aimed to evaluate the genetic diversity of P. vivax Duffy-binding protein gene domain II (pvdbp-II) in isolates from the eastern and western borders of Myanmar, and compared it with that from global P. vivax populations. Methods pvdbp-II sequences were obtained from 85 and 82 clinical P. vivax isolates from the eastern and western Myanmar borders, respectively. In addition, 504 pvdbp-II sequences from nine P. vivax populations of the world were retrieved from GenBank and used for comparative analysis of genetic diversity, recombination and population structure of the parasite population. Results The nucleotide diversity of the pvdbp-II sequences from the Myanmar border parasite isolates was not uniform, with the highest diversity located between nucleotides 1078 and 1332. Western Myanmar isolates had a unique R391C mutation. Evidence of positive natural selection was detected in pvdbp-II gene in P. vivax isolates from the eastern Myanmar area. P. vivax parasite populations in the GMS, including those from the eastern, western, and central Myanmar as well as Thailand showed low-level genetic differentiation (FST, 0.000–0.099). Population genetic structure analysis of the pvdbp-II sequences showed a division of the GMS populations into four genetic clusters. A total of 60 PvDBP-II haplotypes were identified in 210 sequences from the GMS populations. Among the epitopes in PvDBP-II, high genetic diversity was found in epitopes 45 (379-SIFGT(D/G)(E/K)(K/N)AQQ(R/H)(R/C)KQ-393, π = 0.029) and Ia (416-G(N/K)F(I/M)WICK(L/I)-424], Ib [482-KSYD(Q/E)WITR-490, π = 0.028) in P. vivax populations from the eastern and western borders of Myanmar. Conclusions The pvdbp-II gene is genetically diverse in the eastern and western Myanmar border P. vivax populations. Positive natural selection and recombination occurred in pvdbp-II gene. Low-level genetic differentiation was identified, suggesting extensive gene flow of the P. vivax populations in the GMS. These results can help understand the evolution of the P. vivax populations in the course of regional malaria elimination and guide the design of PvDBP-II-based vaccine.


2011 ◽  
Vol 57 (6) ◽  
pp. 717-724 ◽  
Author(s):  
Jiandong Yang ◽  
Zhihe Zhang ◽  
Fujun Shen ◽  
Xuyu Yang ◽  
Liang Zhang ◽  
...  

Abstract Understanding present patterns of genetic diversity is critical in order to design effective conservation and management strategies for endangered species. Tangjiahe Nature Reserve (NR) is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China. Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation. Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tangjiahe population. The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve. Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 individuals of the two subpopulations. All individuals from the same subpopulation were assigned to one cluster. This indicates high gene flow between subpopulations. F statistic analyses revealed a low FIS-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR. Additionally, our data show a high level of genetic diversity for the Tangjiahe population. Mean allele number (A), Allelic richness (AR) and mean expected heterozygosity (HE) for the Tangjiahe population was 5.9, 5.173 and 0.703, respectively. This wild giant panda population can be restored through concerted effort.


Sign in / Sign up

Export Citation Format

Share Document