Detection of Weed Species in Soybean Using Multispectral Digital Images

2004 ◽  
Vol 18 (3) ◽  
pp. 742-749 ◽  
Author(s):  
Kevin D. Gibson ◽  
Richard Dirks ◽  
Case R. Medlin ◽  
Loree Johnston

The objective of this research was to assess the accuracy of remote sensing for detecting weed species in soybean based on two primary criteria: the presence or absence of weeds and the identification of individual weed species. Treatments included weeds (giant foxtail and velvetleaf) grown in monoculture or interseeded with soybean, bare ground, and weed-free soybean. Aerial multispectral digital images were collected at or near soybean canopy closure from two field sites in 2001. Weedy pixels (1.3 m2) were separated from weed-free soybean and bare ground with no more than 11% error, depending on the site. However, the classification of weed species varied between sites. At one site, velvetleaf and giant foxtail were classified with no more than 17% error, when monoculture and interseeded plots were combined. However, classification errors were as high as 39% for velvetleaf and 17% for giant foxtail at the other site. Our results support the idea that remote sensing has potential for weed detection in soybean, particularly when weed management systems do not require differentiation among weed species. Additional research is needed to characterize the effect of weed density or cover and crop–weed phenology on classification accuracies.

Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


2020 ◽  
Vol 12 (12) ◽  
pp. 2007
Author(s):  
Kathryn Sheffield ◽  
Tony Dugdale

Weeds can impact many ecosystems, including natural, urban and agricultural environments. This paper discusses core weed biosecurity program concepts and considerations for urban and peri-urban areas from a remote sensing perspective and reviews the contribution of remote sensing to weed detection and management in these environments. Urban and peri-urban landscapes are typically heterogenous ecosystems with a variety of vectors for invasive weed species introduction and dispersal. This diversity requires agile systems to support landscape-scale detection and monitoring, while accommodating more site-specific management and eradication goals. The integration of remote sensing technologies within biosecurity programs presents an opportunity to improve weed detection rates, the timeliness of surveillance, distribution and monitoring data availability, and the cost-effectiveness of surveillance and eradication efforts. A framework (the Weed Aerial Surveillance Program) is presented to support a structured approach to integrating multiple remote sensing technologies into urban and peri-urban weed biosecurity and invasive species management efforts. It is designed to support the translation of remote sensing science into operational management outcomes and promote more effective use of remote sensing technologies within biosecurity programs.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 1002-1009 ◽  
Author(s):  
Dunk Porterfield ◽  
John W. Wilcut ◽  
Jerry W. Wells ◽  
Scott B. Clewis

Field studies conducted at three locations in North Carolina in 1998 and 1999 evaluated crop tolerance, weed control, and yield with CGA-362622 alone and in combination with various weed management systems in transgenic and nontransgenic cotton systems. The herbicide systems used bromoxynil, CGA-362622, glyphosate, and pyrithiobac applied alone early postemergence (EPOST) or mixtures of CGA-362622 plus bromoxynil, glyphosate, or pyrithiobac applied EPOST. Trifluralin preplant incorporated followed by (fb) fluometuron preemergence (PRE) alone or fb a late POST–directed (LAYBY) treatment of prometryn plus MSMA controlled all the weed species present less than 90%. Herbicide systems that included soil-applied and LAYBY herbicides plus glyphosate EPOST or mixtures of CGA-362622 EPOST plus bromoxynil, glyphosate, or pyrithiobac controlled broadleaf signalgrass, entireleaf morningglory, large crabgrass, Palmer amaranth, prickly sida, sicklepod, and smooth pigweed at least 90%. Only cotton treated with these herbicide systems yielded equivalent to the weed-free check for each cultivar. Bromoxynil systems did not control Palmer amaranth and sicklepod, pyrithiobac systems did not control sicklepod, and CGA-362622 systems did not control prickly sida.


2013 ◽  
Vol 16 (4) ◽  
pp. 676-687 ◽  
Author(s):  
David J. Gibson ◽  
Karla L. Gage ◽  
Joseph L. Matthews ◽  
Bryan G. Young ◽  
Micheal D.K. Owen ◽  
...  

1999 ◽  
Vol 13 (3) ◽  
pp. 542-547 ◽  
Author(s):  
Brent E. Tharp ◽  
Oliver Schabenberger ◽  
James J. Kells

The recent introduction of glufosinate-resistant and glyphosate-resistant crops provides growers with new options for weed management. Information is needed to compare the effectiveness of glufosinate and glyphosate on annual weeds. Greenhouse trials were conducted to determine the response of barnyardgrass (Echinochloa crus-galli), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberi), large crabgrass (Digitaria sanguinalis), and velvetleaf (Abutilon theophrasti) to glufosinate and glyphosate. The response of velvetleaf and common lambsquarters was investigated at multiple stages of growth. Glufosinate and glyphosate were applied to each weed species at logarithmically incremented rates. The glufosinate and glyphosate rates that provided a 50% reduction in aboveground weed biomass, commonly referred to as GR50values, were compared using nonlinear regression techniques. Barnyardgrass, common ragweed, fall panicum, giant foxtail, and large crabgrass responded similarly to glufosinate and glyphosate. Common lambsquarters 4 to 8 cm in height was more sensitive to glufosinate than glyphosate. In contrast, 15- to 20-cm tall-velvetleaf was more sensitive to glyphosate than glufosinate.


Weed Science ◽  
1996 ◽  
Vol 44 (1) ◽  
pp. 74-86 ◽  
Author(s):  
Orvin C. Burnside ◽  
Robert G. Wilson ◽  
Sanford Weisberg ◽  
Kenneth G. Hubbard

Seed of 41 economically important weed species of the Great Plains region of the United States were buried 20 cm deep in soil in eastern and western Nebraska in 1976. The 41 species consisted of 11 annual grass, 14 annual broadleaf, 4 biennial broadleaf, and 12 perennial broadleaf species. Weed seeds were exhumed annually for germination tests the first 9 yr, then after 12 and 17 yr. Germination percentages at the two burial locations averaged over 0, 1 to 4, 5 to 8, and 9 to 17 yr of burial were 57, 28, 9, and 4% for annual grass; 47, 26, 16, and 11 % for annual broadleaf; 52, 49, 44, and 30 % for biennial broadleaf; 36, 18, 13, and 8% for perennial broadleaf; and 47, 26, 16, and 10% for all 41 weed species, respectively. Biennial broadleaf weeds showed the greatest seed germination over years. Annual grass weeds showed less seed germinability over 17 yr of burial than annual broadleaf weeds and perennial broadleaf weed species were intermediate. Weed seed germinability in soil was greater in the reduced rainfall and more moderate soil temperatures of western Nebraska than in the greater rainfall and more fluctuating soil temperatures of eastern Nebraska. The greatest seed survival among the 41 weed species was shown by common mullein, which had 95% germination after 17 yr of burial in western Nebraska. Decay rates of individual weed species in soil will be of most value to weed scientists, agriculturalists, and modelers evaluating past or designing future weed management systems.


2006 ◽  
Vol 20 (2) ◽  
pp. 422-429
Author(s):  
Thomas R. Hoverstad ◽  
Gregg A. Johnson ◽  
Jeffrey L. Gunsolus ◽  
Robert P. King

Herbicide evaluation trials are typically conducted with the objective of rating herbicide efficacy and assessing crop yield loss. There is little if any attempt to quantify the economic risk associated with each treatment. The objective of this research was to use second-degree stochastic dominance to evaluate the economic stability of corn and soybean weed management systems between two contrasting environments. Weed management systems were evaluated in small-plot replicated trials over a 3-yr time period at two locations in southern Minnesota. One location (Waseca) had a slightly cooler and wetter environment than the second location (Lamberton). The Waseca location also had higher weed density and greater weed species diversity. Adjusted returns from weed management were calculated for each system by measuring economic returns, as determined by deducting weed management costs from the product of crop price and grain yield. Stochastic dominance is a technique that considers the entire distribution of net returns from weed management and compares these cumulative distributions as a basis for analyzing risk. Climate, soils, and weed diversity dictated differences in risk efficiency and effectiveness of the various weed management systems evaluated between the Waseca and Lamberton sites. Stochastic dominance testing is a useful tool for understanding long-term risk across environments. Results can be used to develop effective long-term weed management systems that minimize risk while maximizing profit potential.


Weed Science ◽  
2009 ◽  
Vol 57 (3) ◽  
pp. 311-318 ◽  
Author(s):  
Robert E. Blackshaw ◽  
Louis J. Molnar

Strategic fertilizer management is an important component of integrated weed management systems. A field study was conducted to determine the effect of various application methods of phosphorus (P) fertilizer on weed growth and wheat yield. Weed species were chosen to represent species that varied in their growth responsiveness to P: redroot pigweed (medium), wild mustard (medium), wild oat (medium), green foxtail (high), redstem filaree (high), and round-leaved mallow (high). P fertilizer application methods were seed placed at a 5-cm depth, midrow banded at a 10-cm depth, surface broadcast immediately before seeding, and surface broadcast immediately after seeding of wheat. An unfertilized control was included. P treatments were applied to the same plot in four consecutive years to determine annual and cumulative effects over years. Shoot P concentration and biomass of weeds were often lower with seed-placed or subsurface-banded P fertilizer compared with either surface-broadcast application method. This result occurred more frequently with the highly P-responsive weeds and was more evident in the latter study years. P application method had little effect on weed-free wheat yield but often had a large effect on weed-infested wheat yield. Seed-placed or midrow-banded P compared with surface-broadcast P fertilizer often resulted in higher yields when wheat was in the presence of competitive weeds. Seedbank determinations at the conclusion of the study indicated that the seed density of five of six weed species was reduced with seed-placed or subsurface-banded P compared with surface-broadcast P. Information gained in this study will aid development of more effective weed management systems in wheat.


Author(s):  
M. Hassanein ◽  
M. Khedr ◽  
N. El-Sheimy

<p><strong>Abstract.</strong> Precision Agriculture (PA) management systems are considered among the top ten revolutions in the agriculture industry during the last couple decades. Generally, the PA is a management system that aims to integrate different technologies as navigation and imagery systems to control the use of the agriculture industry inputs aiming to enhance the quality and quantity of its output, while preserving the surrounding environment from any harm that might be caused due to the use of these inputs. On the other hand, during the last decade, Unmanned Aerial Vehicles (UAVs) showed great potential to enhance the use of remote sensing and imagery sensors for different PA applications such as weed management, crop health monitoring, and crop row detection. UAV imagery systems are capable to fill the gap between aerial and terrestrial imagery systems and enhance the use of imagery systems and remote sensing for PA applications. One of the important PA applications that uses UAV imagery systems, and which drew lots of interest is the crop row detection, especially that such application is important for other applications such as weed detection and crop yield predication. This paper introduces a new crop row detection methodology using low-cost UAV RGB imagery system. The methodology has three main steps. First, the RGB images are converted into HSV color space and the Hue image are extracted. Then, different sections are generated with different orientation angles in the Hue images. For each section, using the PCA of the Hue values in the section, an analysis can be performed to evaluate the variances of the Hue values in the section. The crop row orientation angle is detected as the same orientation angle of the section that provides the minimum variances of Hue values. Finally, a scan line is generated over the Hue image with the same orientation angle of the crop rows. The scan line computes the average of the Hue values for each line in the Hue image similar to the detected crop row orientation. The generated values provide a graph full of peaks and valleys which represent the crop and soil rows. The proposed methodology was evaluated using different RGB images acquired by low-cost UAV for a Canola field. The images were taken at different flight heights and different dates. The achieved results proved the ability of the proposed methodology to detect the crop rows at different cases.</p>


Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 285-293 ◽  
Author(s):  
Charles L. Mohler ◽  
Javaid Iqbal ◽  
Jianying Shen ◽  
Antonio DiTommaso

Recovery of common agricultural weeds after burial by soil was studied in four greenhouse and three field experiments. Species studied included velvetleaf, Powell amaranth, common lambsquarters, barnyardgrass, and giant foxtail. Seedlings were bent over before burial to simulate the effect of the impact of soil thrown by a cultivator. Altogether, more than 35,000 seedlings were marked and observed for recovery. No seedlings recovered from 4 cm of burial. Recovery from complete burial under 2 cm of soil ranged from 0 to 24% depending on the experiment, species, and watering treatment, but recovery greater than 5% was rare. Large-seeded species tended to recover from complete burial under 2 cm of soil better than small-seeded species. The study did not reveal a difference in recovery of grasses relative to broadleaf weeds. Overall, seedlings tended to recover best when water was applied daily after burial, worst when water was applied once on the day of burial, and to an intermediate extent when no water was applied. However, difference in recovery between the no-water and watering-once treatments were usually small. Also, many experiment by species combinations showed no significant differences among watering treatments. When even a small portion of the seedling was left exposed, recovery generally exceeded 50%. Organic weed management systems commonly use burial of weed seedlings with tine weeders and soil thrown by sweeps and hilling disks to control weeds in crop rows. Recovery from burial could pose a substantial weed management problem in some circumstances, particularly for large-seeded weed species. Maximizing burial depth is important for limiting recovery. Recovery from burial can be minimized by withholding irrigation for several days after hilling-up operations.


Sign in / Sign up

Export Citation Format

Share Document