scholarly journals CROP ROW DETECTION PROCEDURE USING LOW-COST UAV IMAGERY SYSTEM

Author(s):  
M. Hassanein ◽  
M. Khedr ◽  
N. El-Sheimy

<p><strong>Abstract.</strong> Precision Agriculture (PA) management systems are considered among the top ten revolutions in the agriculture industry during the last couple decades. Generally, the PA is a management system that aims to integrate different technologies as navigation and imagery systems to control the use of the agriculture industry inputs aiming to enhance the quality and quantity of its output, while preserving the surrounding environment from any harm that might be caused due to the use of these inputs. On the other hand, during the last decade, Unmanned Aerial Vehicles (UAVs) showed great potential to enhance the use of remote sensing and imagery sensors for different PA applications such as weed management, crop health monitoring, and crop row detection. UAV imagery systems are capable to fill the gap between aerial and terrestrial imagery systems and enhance the use of imagery systems and remote sensing for PA applications. One of the important PA applications that uses UAV imagery systems, and which drew lots of interest is the crop row detection, especially that such application is important for other applications such as weed detection and crop yield predication. This paper introduces a new crop row detection methodology using low-cost UAV RGB imagery system. The methodology has three main steps. First, the RGB images are converted into HSV color space and the Hue image are extracted. Then, different sections are generated with different orientation angles in the Hue images. For each section, using the PCA of the Hue values in the section, an analysis can be performed to evaluate the variances of the Hue values in the section. The crop row orientation angle is detected as the same orientation angle of the section that provides the minimum variances of Hue values. Finally, a scan line is generated over the Hue image with the same orientation angle of the crop rows. The scan line computes the average of the Hue values for each line in the Hue image similar to the detected crop row orientation. The generated values provide a graph full of peaks and valleys which represent the crop and soil rows. The proposed methodology was evaluated using different RGB images acquired by low-cost UAV for a Canola field. The images were taken at different flight heights and different dates. The achieved results proved the ability of the proposed methodology to detect the crop rows at different cases.</p>

Author(s):  
M. Hassanein ◽  
N. El-Sheimy

<p><strong>Abstract.</strong> The use of Unmanned Aerial Vehicle (UAV) imagery systems for Precision Agriculture (PA) applications drew a lot of attention through the last decade. UAV as a platform for an imagery sensor is providing a major advantage as it can provide high spatial resolution images compared to satellite platform. Moreover, it provides the user with the ability to collect the needed images at any time along with the ability to cover the agriculture fields faster than terrestrial platform. Therefore, such UAV imagery systems are capable to fit the gap between aerial and terrestrial Remote Sensing. One of the important PA applications that using UAV imagery system for it showed great potentials is weed management and more specifically the weed detection step. The current weed management procedure depends on spraying the whole agriculture field with chemical herbicides to execute any weed plants in the field. Although such procedure seems to be effective, it has huge effect on the surrounding environment due to the excessive use of the chemical, especially that weed plants don’t cover the whole field. Usually weed plants spread through only few spots of the field. Therefore, different efforts were introduced to develop weed detection techniques using UAV imagery systems. Though the different advantages of the UAV imagery systems, they systems didn’t draw the users interest due to many limitations including the cost of the system. Therefore, the proposed paper introduces a new weed detection methodology from RGB images acquired by low-cost UAV imagery system. The proposed methodology adopts detecting the high-density vegetation spots as indication for weed patches spots. The achieved results showed the potential of the proposed methodology to use low-cost UAV imagery system equipped with low-cost RGB imagery sensor for detecting weed patches in different cropped agriculture fields even from different flight height as 20, 40, 80, and 120 meters.</p>


2020 ◽  
Vol 10 (19) ◽  
pp. 6668
Author(s):  
Laura García ◽  
Lorena Parra ◽  
Jose M. Jimenez ◽  
Jaime Lloret ◽  
Pedro V. Mauri ◽  
...  

The increase in the world population has led to new needs for food. Precision Agriculture (PA) is one of the focuses of these policies to optimize the crops and facilitate crop management using technology. Drones have been gaining popularity in PA to perform remote sensing activities such as photo and video capture as well as other activities such as fertilization or scaring animals. These drones could be used as a mobile gateway as well, benefiting from its already designed flight plan. In this paper, we evaluate the adequacy of remote sensing drones to perform gateway functionalities, providing a guide for choosing the best drone parameters for successful WiFi data transmission between sensor nodes and the gateway in PA systems for crop monitoring and management. The novelty of this paper compared with existing mobile gateway proposals is that we are going to test the performance of the drone that is acting as a remote sensing tool to carry a low-cost gateway node to gather the data from the nodes deployed on the field. Taking this in mind, simulations of different scenarios were performed to determine if the data can be transmitted correctly or not considering different flying parameters such as speed (from 1 to 20 m/s) and flying height (from 4 to 104 m) and wireless sensor network parameters such as node density (1 node each 60 m2 to 1 node each 5000 m2) and antenna coverage (25 to 200 m). We have calculated the time that each node remains with connectivity and the time required to send the data to estimate if the connection will be bad, good, or optimal. Results point out that for the maximum node density, there is only one combination that offers good connectivity (lowest velocity, the flying height of 24 m, and antenna with 25 m of coverage). For the other node densities, several combinations of flying height and antenna coverage allows good and optimal connectivity.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 285 ◽  
Author(s):  
Salima Yousfi ◽  
Adrian Gracia-Romero ◽  
Nassim Kellas ◽  
Mohamed Kaddour ◽  
Ahmed Chadouli ◽  
...  

Vegetation indices and canopy temperature are the most usual remote sensing approaches to assess cereal performance. Understanding the relationships of these parameters and yield may help design more efficient strategies to monitor crop performance. We present an evaluation of vegetation indices (derived from RGB images and multispectral data) and water status traits (through the canopy temperature, stomatal conductance and carbon isotopic composition) measured during the reproductive stage for genotype phenotyping in a study of four wheat genotypes growing under different water and nitrogen regimes in north Algeria. Differences among the cultivars were reported through the vegetation indices, but not with the water status traits. Both approximations correlated significantly with grain yield (GY), reporting stronger correlations under support irrigation and N-fertilization than the rainfed or the no N-fertilization conditions. For N-fertilized trials (irrigated or rainfed) water status parameters were the main factors predicting relative GY performance, while in the absence of N-fertilization, the green canopy area (assessed through GGA) was the main factor negatively correlated with GY. Regression models for GY estimation were generated using data from three consecutive growing seasons. The results highlighted the usefulness of vegetation indices derived from RGB images predicting GY.


Author(s):  
R. A. Oliveira ◽  
E. Khoramshahi ◽  
J. Suomalainen ◽  
T. Hakala ◽  
N. Viljanen ◽  
...  

The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5&amp;thinsp;m. The results showed that the real-time remote sensing is promising and feasible in both test sites.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianhai Wang ◽  
Yadong Liu ◽  
Minghui Wang ◽  
Qing Fan ◽  
Hongkun Tian ◽  
...  

Biomass is an important indicator for evaluating crops. The rapid, accurate and nondestructive monitoring of biomass is the key to smart agriculture and precision agriculture. Traditional detection methods are based on destructive measurements. Although satellite remote sensing, manned airborne equipment, and vehicle-mounted equipment can nondestructively collect measurements, they are limited by low accuracy, poor flexibility, and high cost. As nondestructive remote sensing equipment with high precision, high flexibility, and low-cost, unmanned aerial systems (UAS) have been widely used to monitor crop biomass. In this review, UAS platforms and sensors, biomass indices, and data analysis methods are presented. The improvements of UAS in monitoring crop biomass in recent years are introduced, and multisensor fusion, multi-index fusion, the consideration of features not directly related to monitoring biomass, the adoption of advanced algorithms and the use of low-cost sensors are reviewed to highlight the potential for monitoring crop biomass with UAS. Considering the progress made to solve this type of problem, we also suggest some directions for future research. Furthermore, it is expected that the challenge of UAS promotion will be overcome in the future, which is conducive to the realization of smart agriculture and precision agriculture.


Author(s):  
Mohamad Iqbal Suriansyah ◽  
Heru Sukoco ◽  
Mohamad Solahudin

Conventional weed control system is usually used by spraying herbicides uniformly throughout the land. Excessive use of herbicides on an ongoing basis can produce chemical waste that is harmful to plants and soil. The application of precision agriculture farming in the detection process in order to control weeds using Computer Vision On Farm becomes interesting, but it still has some problems due to computer size and power consumption. Raspberry Pi is one of the minicomputer with low price and low power consumption. Having computing like a desktop computer with the open source Linux operating system can be used for image processing and weed fractal dimension processing using OpenCV library and C programming. This research results the best fractal computation time when performing the image with dimension size of 128 x 128 pixels. It is about 7 milliseconds. Furthermore, the average speed ratio between personal computer and Raspberry Pi is 0.04 times faster. The use of Raspberry Pi is cost and power consumption efficient compared to personal computer.


2021 ◽  
Vol 13 (10) ◽  
pp. 1869
Author(s):  
Pietro Mattivi ◽  
Salvatore Eugenio Pappalardo ◽  
Nebojša Nikolić ◽  
Luca Mandolesi ◽  
Antonio Persichetti ◽  
...  

Weed management is a crucial issue in agriculture, resulting in environmental in-field and off-field impacts. Within Agriculture 4.0, adoption of UASs combined with spatially explicit approaches may drastically reduce doses of herbicides, increasing sustainability in weed management. However, Agriculture 4.0 technologies are barely adopted in small-medium size farms. Recently, small and low-cost UASs, together with open-source software packages, may represent a low-cost spatially explicit system to map weed distribution in crop fields. The general aim is to map weed distribution by a low-cost UASs and a replicable workflow, completely based on open GIS software and algorithms: OpenDroneMap, QGIS, SAGA and OpenCV classification algorithms. Specific objectives are: (i) testing a low-cost UAS for weed mapping; (ii) assessing open-source packages for semi-automatic weed classification; (iii) performing a sustainable management scenario by prescription maps. Results showed high performances along the whole process: in orthomosaic generation at very high spatial resolution (0.01 m/pixel), in testing weed detection (Matthews Correlation Coefficient: 0.67–0.74), and in the production of prescription maps, reducing herbicide treatment to only 3.47% of the entire field. This study reveals the feasibility of low-cost UASs combined with open-source software, enabling a spatially explicit approach for weed management in small-medium size farmlands.


2015 ◽  
Vol 13 (34) ◽  
pp. 49-63 ◽  
Author(s):  
Liseth Viviana Campo Arcos ◽  
Juan Carlos Corrales Muñoz ◽  
Agapito Ledezma Espino

This paper presents a proposal for information gathering from crops by means of a low-cost quadcopter known as the AR Drone 2.0. To achieve this, we designed a system for remote sensing that addresses challenges identified in the present research, such as acquisition of aerial photographs of an entire crop and AR Drone navigation on non-planar areas arises. The project is currently at an early stage of development. The first stage describes platform and hardware/software tools used to build the proposed prototype. Second stage characterizes performance experiments of sensors stability and altitude in AR Drone, in order to design an altitude strategy control over non-flat crops. In addition, path planning algorithms based on shortest route by graphs (Dijkstra, A* and wavefront propagation) are evaluated with simulated quadcopter. The implementation of the shortest path algorithms is the beginning to full coverage of a crop. Observations of quadcopter behavior in Gazebo simulator and real tests demonstrate viability to execute the project by using AR Drone like platform of a remote sensing system to precision agriculture.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Marcos J. Villaseñor-Aguilar ◽  
J. Enrique Botello-Álvarez ◽  
F. Javier Pérez-Pinal ◽  
Miroslava Cano-Lara ◽  
M. Fabiola León-Galván ◽  
...  

Artificial vision systems (AVS) have become very important in precision agriculture applied to produce high-quality and low-cost foods with high functional characteristics generated through environmental care practices. This article reported the design and implementation of a new fuzzy classification architecture based on the RGB color model with descriptors. Three inputs were used that are associated with the average value of the color components of four views of the tomato; the number of triangular membership functions associated with the components R and B were three and four for the case of component G. The amount of tomato samples used in training were forty and twenty for testing; the training was done using the Matlab© ANFISEDIT. The tomato samples were divided into six categories according to the US Department of Agriculture (USDA). This study focused on optimizing the descriptors of the color space to achieve high precision in the prediction results of the final classification task with an error of 536,995×10-6. The Computer Vision System (CVS) is integrated by an image isolation system with lighting; the image capture system uses a Raspberry Pi 3 and Camera Module Raspberry Pi 2 at a fixed distance and a black background. In the implementation of the CVS, three different color description methods for tomato classification were analyzed and their respective diffuse systems were also designed, two of them using the descriptors described in the literature.


2015 ◽  
Vol 77 (20) ◽  
Author(s):  
Nasruddin Abu Sari ◽  
A Ahmad ◽  
MY Abu Sari ◽  
S Sahib ◽  
AW Rasib

The need to produce high temporal remote sensing imagery for supporting precision agriculture in oil palm deserves a new low-altitude remote sensing (LARS) technique. Consumer over the shelf unmanned aerial vehicles (UAV) and digital cameras have the potential to serve as Personal Remote Sensing Toolkits which are low-cost, efficient, rapid and safe. The objectives of this study were to develop and test a new technique to rapidly capturing nadir images of large area oil palm plantation (1 km2 ~ 4 km2). Using 5 different multi-rotor UAV models several imagery missions were carried out. Multi-rotors were chosen as a platform due to its vertical take-off and landing (VTOL) feature. Multi-rotor’s VTOL was crucial for imagery mission success. Post processing results showed that for an area of 1 km2, it needs 2 to 6 sorties of quad-rotor UAV with 4000x3000 pixel digital cameras flying at altitude of 120m above ground level and an average of 50m cross-path distance. The results provide a suitability assessment of low-cost digital aerial imagery acquisition system. The study has successfully developed a decent workhorse quad-rotor UAV for Rapid Aerial Photogrammetry Imagery and Delivery (RAPID) in oil palm terrain. Finally we proposed the workhorse UAV as Low-Altitude Personal Remote Sensing (LAPERS) basic founding element.


Sign in / Sign up

Export Citation Format

Share Document