Effects of Water on Recovery of Weed Seedlings Following Burial

Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 285-293 ◽  
Author(s):  
Charles L. Mohler ◽  
Javaid Iqbal ◽  
Jianying Shen ◽  
Antonio DiTommaso

Recovery of common agricultural weeds after burial by soil was studied in four greenhouse and three field experiments. Species studied included velvetleaf, Powell amaranth, common lambsquarters, barnyardgrass, and giant foxtail. Seedlings were bent over before burial to simulate the effect of the impact of soil thrown by a cultivator. Altogether, more than 35,000 seedlings were marked and observed for recovery. No seedlings recovered from 4 cm of burial. Recovery from complete burial under 2 cm of soil ranged from 0 to 24% depending on the experiment, species, and watering treatment, but recovery greater than 5% was rare. Large-seeded species tended to recover from complete burial under 2 cm of soil better than small-seeded species. The study did not reveal a difference in recovery of grasses relative to broadleaf weeds. Overall, seedlings tended to recover best when water was applied daily after burial, worst when water was applied once on the day of burial, and to an intermediate extent when no water was applied. However, difference in recovery between the no-water and watering-once treatments were usually small. Also, many experiment by species combinations showed no significant differences among watering treatments. When even a small portion of the seedling was left exposed, recovery generally exceeded 50%. Organic weed management systems commonly use burial of weed seedlings with tine weeders and soil thrown by sweeps and hilling disks to control weeds in crop rows. Recovery from burial could pose a substantial weed management problem in some circumstances, particularly for large-seeded weed species. Maximizing burial depth is important for limiting recovery. Recovery from burial can be minimized by withholding irrigation for several days after hilling-up operations.

Weed Science ◽  
2014 ◽  
Vol 62 (4) ◽  
pp. 555-562 ◽  
Author(s):  
Meredith J. Ward ◽  
Matthew R. Ryan ◽  
William S. Curran ◽  
Jeffrey Law

The utility of biological control for weed management in agroecosystems will increase with a greater understanding of the relationships between common weed and granivore species. Giant foxtail is an introduced, summer annual grass weed that is common throughout the United States and problematic in numerous crops.Harpalus pensylvanicus(DeGeer) (Coleoptera: Carabidae) is a common, native, omnivorous carabid beetle with a range that overlaps giant foxtail. In 2004 and 2005,H. pensylvanicuswas captured from farm fields in Centre County, PA, and subjected to laboratory feeding trials to test the preference of giant foxtail and other species on predation byH. pensylvanicus. Weed species seed preference experiments that included “Choice” and “No Choice” treatments were conducted using giant foxtail, common lambsquarters, and velvetleaf. When given a choice amongst the three weed species,H. pensylvanicuspreferred giant foxtail and common lambsquarters seeds equally compared to velvetleaf seeds. When given the choice,H. pensylvanicuspreferred newly dispersed giant foxtail seeds over field-aged seeds. Phenology of giant foxtail seed shed relative toH. pensylvanicusactivity density was also quantified in field experiments in 2005 and 2006. Giant foxtail seed rain was determined by collecting shed seeds from August through October using pan traps. Activity density ofH. pensylvanicuswas monitored for 72-h periods using pitfall traps from June to October. Peak activity density ofH. pensylvanicusoccurred at the onset of giant foxtail seed shed in both years; however, giant foxtail seed shed peaked approximately 30 to 50 d afterH. pensylvanicusactivity density. Future research should focus on management practices that enhance and supportH. pensylvanicuspopulations later in the growing season to maximize suppression of giant foxtail and other weeds that shed palatable seeds later in the season.


1999 ◽  
Vol 13 (2) ◽  
pp. 354-360 ◽  
Author(s):  
Lisa C. Gonzini ◽  
Stephen E. Hart ◽  
Loyd M. Wax

Field experiments were conducted in 1995 and 1996 at DeKalb and Urbana, IL, to evaluate weed management systems in glyphosate-resistant soybean planted in rows 76 cm wide. These experiments compared weed control using preemergence (PRE) herbicides followed by glyphosate or postemergence (POST) tank-mix combinations of glyphosate and acetolactate-synthase-inhibiting herbicides with glyphosate applied alone at 0.63 kg ae/ha in single or sequential applications. Overall, the use of a tank-mix partner or a PRE herbicide followed by glyphosate improved weed control compared to a single application of glyphosate. However, weed control with these treatments was not better than with sequential applications of glyphosate. Control of giant foxtail exceeded 90% for single applications of glyphosate except at DeKalb in 1995 when late emergence of giant foxtail occurred after POST applications had been made. A PRE grass herbicide or a late postemergence (LPOST) application of glyphosate was necessary for season-long control of late-emerging giant foxtail. Tank-mixing glyphosate with imazethapyr, cloransulammethyl, and CGA-277476 or applying glyphosate LPOST following these herbicides improved giant foxtail control compared with these herbicides applied alone. A single application of glyphosate controlled common lambsquarters 88% or greater in two of three trials. At Urbana in 1995, a single application of glyphosate controlled common lambsquarters 78% compared to 88 to 96% control with PRE herbicides followed by glyphosate or sequential applications of glyphosate. Velvetleaf control with a single application of glyphosate ranged from 55 to 78%. A PRE application of chlorimuron + metribuzin, cloransulammethyl, or sulfentrazone followed by glyphosate POST, as well as sequential applications of glyphosate, consistently improved velvetleaf control compared to a single application of glyphosate. In some cases, adding glyphosate to a POST application of imazethapyr or CGA-277476 improved control of velvetleaf but decreased velvetleaf control when added to cloransulammethyl.


2019 ◽  
Vol 33 (03) ◽  
pp. 448-458 ◽  
Author(s):  
Brendan A. Metzger ◽  
Nader Soltani ◽  
Alan J. Raeder ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractEffective POST herbicides and herbicide mixtures are key components of integrated weed management in corn; however, herbicides vary in their efficacy based on application timing. Six field experiments were conducted over 2 yr (2017–2018) in southwestern Ontario, Canada, to determine the effects of herbicide application timing and rate on the efficacy of tolpyralate, a new 4-hydroxyphenyl pyruvate dioxygenase inhibitor. Tolpyralate at 15, 30, or 40 g ai ha−1 in combination with atrazine at 500 or 1,000 g ai ha−1 was applied PRE, early POST, mid-POST, or late POST. Tolpyralate + atrazine at rates ≥30 + 1,000 g ha−1 provided equivalent control of common lambsquarters and Powell amaranth applied PRE or POST, whereas no rate applied PRE controlled common ragweed, velvetleaf, barnyardgrass, or green foxtail. Common ragweed, common lambsquarters, velvetleaf, and Powell amaranth were controlled equally regardless of POST timing. In contrast, control of barnyardgrass and green foxtail declined when herbicide application was delayed to the late-POST timing, irrespective of herbicide rate. Similarly, corn grain yield declined within each tolpyralate + atrazine rate when herbicide applications were delayed to late-POST timing. Overall, the results of this study indicate that several monocot and dicot weed species can be controlled with tolpyralate + atrazine with an early to mid-POST herbicide application timing, before weeds reach 30 cm in height, and Powell amaranth and common lambsquarters can also be controlled PRE. Additionally, this study provides further evidence highlighting the importance of effective, early-season weed control in corn.


1999 ◽  
Vol 13 (3) ◽  
pp. 542-547 ◽  
Author(s):  
Brent E. Tharp ◽  
Oliver Schabenberger ◽  
James J. Kells

The recent introduction of glufosinate-resistant and glyphosate-resistant crops provides growers with new options for weed management. Information is needed to compare the effectiveness of glufosinate and glyphosate on annual weeds. Greenhouse trials were conducted to determine the response of barnyardgrass (Echinochloa crus-galli), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberi), large crabgrass (Digitaria sanguinalis), and velvetleaf (Abutilon theophrasti) to glufosinate and glyphosate. The response of velvetleaf and common lambsquarters was investigated at multiple stages of growth. Glufosinate and glyphosate were applied to each weed species at logarithmically incremented rates. The glufosinate and glyphosate rates that provided a 50% reduction in aboveground weed biomass, commonly referred to as GR50values, were compared using nonlinear regression techniques. Barnyardgrass, common ragweed, fall panicum, giant foxtail, and large crabgrass responded similarly to glufosinate and glyphosate. Common lambsquarters 4 to 8 cm in height was more sensitive to glufosinate than glyphosate. In contrast, 15- to 20-cm tall-velvetleaf was more sensitive to glyphosate than glufosinate.


2013 ◽  
Vol 27 (2) ◽  
pp. 378-388 ◽  
Author(s):  
Alexander J. Lindsey ◽  
Karen A. Renner ◽  
Wesley J. Everman

Potatoes are an important global food crop typically produced in high-input systems in temperate zones. Growers that have access to compost may use it to improve soil health and increase tuber yields, but compost may also increase weed competition by increasing early-season water availability and weed growth. A field study at the Michigan State University Montcalm Research farm in 2010 and 2011 investigated the impact of compost on weed competition in potato. Potatoes were grown in field plots with 0, 4,000, or 8,000 kg carbon (C) ha−1of compost under weed-free conditions, and in competition with common lambsquarters, giant foxtail, and hairy nightshade. Compost did not increase biomass or seed production of any weed species. Giant foxtail and hairy nightshade at 5.3 plants per meter of row reduced potato yield by 20%; common lambsquarters reduced yield by 45%. The yield reduction by giant foxtail and hairy nightshade was due to a decrease in tuber bulking, whereas yield reductions from common lambsquarters were a result of lower tuber set and bulking. Potato yield increased 5 to 15% in compost compared to non-compost treatments; tuber specific gravity decreased by 0.3% in composted treatments. Across weed densities, elevated soil potassium levels in the 8,000 kg C ha−1composted treatment may have increased potato yield and decreased tuber specific gravity.


Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Dawit Mulugeta ◽  
David E. Stoltenberg

Peak germination and emergence of common lambsquarters usually occur in early to mid-spring, but both processes can occur during summer and fall. Seeds produced by different common lambsquarters cohorts (seedlings that emerge at nearly the same time) may vary in dormancy status, response to environmental conditions, and response to management factors. Therefore, experiments were conducted to determine the influence of different cohorts on common lambsquarters demography. Field experiments determined plant density, biomass, and seed production of different common lambsquarters cohorts within a crop-free community of annual weed species that included redroot pigweed, giant foxtail, and velvetleaf. Common lambsquarters plant density and aboveground biomass were greater for a mid-May cohort than for early June, late June, mid-July, or early August cohorts, but seed production of the mid-May and early June cohorts did not differ (about 192,000 seeds m−2) and was greater than that of other cohorts (111,500 seeds m−2or less). In the laboratory, percent germination prior to stratification (exposure of seeds to low temperatures) was less for seeds harvested from early May and late May cohorts (≥ 9%) than those of mid-June or early July cohorts (≤ 75%). After stratification in the field, percent emergence (seedlings per number of planted seeds) and mean emergence time were similar among early May, late May, mid-June, and early July cohort seed sources, and were not influenced by shallow burial in soil. These results suggest that recruitment from seeds produced by different common lambsquarters cohorts is similar, but proportional to the number of seeds produced by each cohort.


1989 ◽  
Vol 3 (1) ◽  
pp. 162-165 ◽  
Author(s):  
Edward E. Schweizer ◽  
Robert L. Zimdahl ◽  
Rome H. Mickelson

The impact of three till-plant and two weed management systems on weed seed reserves of soil, yearly weed problems, and corn production was assessed under center-pivot irrigation for 3 consecutive years. Annual weeds were controlled in disced, bedded, and strip rotary till-plant systems with a moderate or intensive level of herbicides. Weed seed of seven annual weed species were identified, with common lambsquarters and stinkgrass, comprising 45 and 41%, respectively, of the initial 305 million seed/ha in the upper 25 cm of the soil profile. After the third cropping year, overall decline in total seed number in soil was 45% when averaged over till-plant and weed management systems. Grain yields did not differ between weed management systems, but the disced till-plant system produced 16% less grain than the bedded and strip rotary till-plant systems over 2 yr.


2006 ◽  
Vol 20 (3) ◽  
pp. 605-611 ◽  
Author(s):  
Cory M. Whaley ◽  
Gregory R. Armel ◽  
Henry P. Wilson ◽  
Thomas E. Hines

Field experiments were conducted in 2002 and 2003 to evaluate total POST weed control in corn with mixtures of mesotrione, atrazine, and the commercial mixture of nicosulfuron plus rimsulfuron plus atrazine at registered and reduced rates. Treatments were compared with nicosulfuron plus rimsulfuron plus atrazine POST, andS-metolachlor plus atrazine PRE alone and followed by (fb) nicosulfuron plus rimsulfuron plus atrazine POST. All treatments controlled common lambsquarters 8 wk after the postemergence treatments (WAPT). Common ragweed control with POST mesotrione plus nicosulfuron plus rimsulfuron plus atrazine combinations was greater than 89%. Mesotrione plus the registered rate of nicosulfuron plus rimsulfuron plus atrazine POST controlled common ragweed more effectively than the PRE treatment alone. Addition of atrazine to mesotrione improved common ragweed control by at least 38 percentage points over mesotrione alone. Nicosulfuron plus rimsulfuron plus atrazine at the registered rate and in mixtures with mesotrione controlled morningglory species (pitted and ivyleaf morningglory) 89 to 91%. Large crabgrass control varied between 2002 and 2003. In 2002, large crabgrass control was 58 to 76% with all POST treatments, but in 2003, nicosulfuron plus rimsulfuron plus atrazine POST alone controlled large crabgrass greater than 86%. Large crabgrass was more effectively controlled by treatments withS-metolachlor plus atrazine PRE than by the total POST treatments in 2002. Giant foxtail was controlled at least 97% with nicosulfuron plus rimsulfuron plus atrazine treatments.S-metolachlor plus atrazine PRE fb nicosulfuron plus rimsulfuron plus atrazine POST controlled all weed species greater than 85%. Corn yields by total POST treatment combinations of mesotrione plus either rate of nicosulfuron plus rimsulfuron plus atrazine were comparable toS-metolachlor plus atrazine PRE alone or fb nicosulfuron plus rimsulfuron plus atrazine POST.


Weed Science ◽  
1999 ◽  
Vol 47 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Dawit Mulugeta ◽  
Chris M. Boerboom

A better understanding of the influence of various crop and weed management practices on spatiotemporal dynamics of weeds could improve the design of integrated weed management systems. We examined the influence of 18- and 76-cm soybean row spacings on emergence pattern and spatial aggregation of giant foxtail, common lambsquarters, and velvetleaf seedling cohorts. In addition, we characterized the soil seedbank and determined the quantitative and spatial relationship between the seedbank and seedling populations. Viable seeds of about 10 weed species and twice as many species of seedlings were identified in the weed community. Giant foxtail and common lambsquarters were the predominant species in the seedling and seedbank population, respectively, each accounting for 60 to 70% of the total weed species density. Emergence of giant foxtail, common lambsquarters, and velvetleaf depleted 12 to 33%, < 2% and 12 to 49% of the seedbank in the upper 10 cm of the soil profile. Peak time and periodicity of weed emergence was not influenced by soybean row spacing, and peak time of emergence of giant foxtail, common lambsquarters, and velvetleaf occurred 3 to 4, 3 to 6, and 3 to 9 weeks after soybean planting (WAP), respectively. Magnitude of giant foxtail emergence 5, 6, and 9 WAP was 98, 96, and 76% greater in 76- than in 18-cm row soybeans only when the population of 76-cm row soybeans was 57% lower than the 18-cm soybeans in 1997. Giant foxtail and common lambsquarters seeds in the seedbank were aggregated in 1996 and 1997 according to the Taylor power law (TPL) and the negative binomial distribution (NBD). The TPL and the NBD were similar in describing the spatial aggregation of giant foxtail and common lambsquarters but not some velvetleaf seedling cohorts. The spatial aggregation of seedlings varied among cohorts for different weed species and was likely due to species-specific biological characteristics that influence seed dispersal, germination, and seedling emergence. Within a 1.5-ha area, aggregation declined with decreasing density. Within a 24-m2area, the level of aggregation of all weed species decreased as seedling densities increased. These results indicated that soybean row spacing influenced neither weed emergence pattern nor weed spatial aggregation; thus, several management decisions can be similar in 18- and 76-cm row soybeans.


1997 ◽  
Vol 11 (3) ◽  
pp. 484-488 ◽  
Author(s):  
Gregory J. Steckel ◽  
Loyd M. Wax ◽  
F. William Simmons ◽  
William H. Phillips

Field experiments were conducted in 1993, 1994, and 1995 to determine the effects of glufosinate rate and application timing on giant foxtail, common lambsquarters, common cocklebur, and Pennsylvania smartweed control in absence of a crop. Glufosinate at 140 g ai/ha controlled less than 80% of the weed species evaluated. When glufosinate rate was increased to 420 g/ha and applied to 10-cm giant foxtail, control was greater than 80% all 3 yr of the study. Applications made to 10-cm plants resulted in 80% or greater control for common cocklebur all 3 yr and Pennsylvania smartweed 2 of the 3 yr with 420 and 560 g/ha, respectively. Common lambsquarters was the most tolerant species evaluated and was not consistently controlled acceptably (> 80%), even with glufosinate at rates of 560 g/ha. Control with glufosinate at 420 or 560 g/ha was most effective when applied at the 10-cm weed height compared either to the 5- or 15-cm weed height.


Sign in / Sign up

Export Citation Format

Share Document