Characterization of Waterhemp (Amaranthus tuberculatus) × Smooth Pigweed (A. hybridus) F1Hybrids

2006 ◽  
Vol 20 (1) ◽  
pp. 14-22 ◽  
Author(s):  
Federico Trucco ◽  
Tatiana Tatum ◽  
Kenneth R. Robertson ◽  
A. Lane Rayburn ◽  
Patrick J. Tranel

In the state of Illinois, waterhemp and smooth pigweed are among the worst agricultural weeds. Previous research shows high potential for hybridization between these two species. However, the actual occurrence of hybrids in natural settings is still uncertain. Morphological similarity between hybrids and waterhemp makes field surveys of hybrids difficult to conduct. The main purpose of this study was to characterize the morphology of waterhemp × smooth pigweed F1hybrids, emphasizing evaluation of characters that may allow for hybrid discrimination in fieldAmaranthuscommunities. Concurrently, the study characterized hybrid reproductive fitness, chromosome number, and DNA content. To accomplish this, hybrids were obtained from field crosses. A species-specific polymorphism in theALSgene was used to verify hybrid identity. Significant differences (α = 0.05) between hybrids and individuals of the parental species were observed for five staminate and five carpellate characters. Of these, five characters differentiated hybrids from waterhemp. However, clustering analyses using these characters indicated that morphological differences were not reliable enough, by themselves, for unambiguous hybrid identification. Also, hybrid homoploidy (2n= 32) with respect to parental species excluded chromosome counts in hybridity determinations. However, DNA content analysis may be used for such purpose. Hybrids had an average of 1.21 pg of DNA per 2C nucleus, a value intermediate to that of parental species. Hybrids produced 3.3 or 0.7% the seed output of parental and sibling waterhemp individuals, respectively. Percent micropollen in hybrids was 95-times greater than in parental species. Hybrid sterility appears to be the most reliable feature for hybrid discrimination when conducting field surveys. However, molecular and cytogenetic analyses as employed in this study may be desired for ultimate identity corroboration.

2021 ◽  
Vol 118 (38) ◽  
pp. e2101242118
Author(s):  
Samina Naseeb ◽  
Federico Visinoni ◽  
Yue Hu ◽  
Alex J. Hinks Roberts ◽  
Agnieszka Maslowska ◽  
...  

Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than via further breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces interspecies hybrids to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids and for nuclear–mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified quantitative trait loci (QTLs) for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, in which the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type–dependent and –independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.


2021 ◽  
Author(s):  
S. Naseeb ◽  
F. Visinoni ◽  
Y. Hu ◽  
A. J. Hinks Roberts ◽  
A. Maslowska ◽  
...  

AbstractHybrids species can harbour a combination of beneficial traits from each parent and may exhibit hybrid vigour, more readily adapting to new harsher environments. Inter-species hybrids are also sterile and therefore an evolutionary dead-end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces inter-species hybrids, to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids, and for nuclear-mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified QTLs for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, where the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type dependent and independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.


2017 ◽  
Vol 107 (0) ◽  
Author(s):  
Andrea A. F. Mourão ◽  
Diogo Freitas-Souza ◽  
Diogo T. Hashimoto ◽  
Daniela C. Ferreira ◽  
Fernanda D. do Prado ◽  
...  

ABSTRACT The hybridization is a widely-discussed issue in several studies with fish species. For some authors, hybridization may be related with diversification and speciation of several groups, or also with the extinction of populations or species. Difficulties to differentiate species and hybrids may be a problem to correctly apply a management of wild species, because hybrid lineages, especially the advanced ones, may resemble the parental species. The genus Cichla Bloch & Schneider, 1801 constitutes an interesting experimental model, considering that hybridization and taxonomic uncertainties hinder a correct identification. Considering these problems, in this study, we developed genetic methodologies and applied meristic and morphometric approaches in wild samples in order to identify species and for test a possible hybridization between Cichla kelberi Kullander & Ferreira, 2006 and Cichla piquiti Kullander & Ferreira, 2006. For this, C. kelberi, C. piquiti and potential hybrid ( carijó) individuals were collected in Paraná and Tietê rivers (SP, Brazil). For meristic and morphometric methods, the individuals were analyzed using the statistical software Pcord 5:31, while for molecular methods, primers for PCR-multiplex were designed and enzyme for PCR-RFLP were selected, under the species-specific nucleotide. All results indicated that the carijó is not an interspecific hybrid, because it presented identical genetic pattern and morphology closed to C. piquiti. Thus, we propose that carijó is a C. piquiti morphotype. In addition, this study promotes a new molecular tool that could be used in future research, monitoring and management programs of the genus Cichla.


ZooKeys ◽  
2021 ◽  
Vol 1017 ◽  
pp. 111-126
Author(s):  
Adriana Vella ◽  
Noel Vella ◽  
Carolina Acosta-Díaz

The family Serranidae is represented by 92 genera and 579 valid species, with the genus Serranus Cuvier, 1816, containing 30 species. In this study, specimens of Butterfly-winged Comber, Serranus papilionaceus Valenciennes, 1832, were collected from the Canary Islands and compared morphologically and genetically to Painted Comber, Serranus scriba (Linnaeus, 1758), from the Mediterranean Sea. Morphological differences, especially in the colour banding pattern, were corroborated by genetic differences in mitochondrial (COI and ND2) and nuclear (Rhod and PTR) markers. The mitochondrial DNA markers revealed a high level of divergence and no shared haplotypes between the two species (interspecific divergence: COI 4.31%; ND2 8.68%), and a phylogenetic analysis showed that these two species are closely related sister species sharing common ancestry. This study is therefore offering to resurrect S. papilionaceus Valenciennes, 1832 as a valid species increasing the number of eastern Atlantic Serranus species to 11. This should direct new species-specific research, including its population conservation status assessment across its distribution.


2019 ◽  
Vol 30 (2) ◽  
pp. 47-54
Author(s):  
M.R. Ferrari ◽  
E.J. Greizerstein ◽  
L. Poggio

In this work the relationship between genome size of Glandularia species and the meiotic configurations found in their hybrids are discussed. Glandularia incisa (Hook.) Tronc., growing in two localities of Corrientes and Córdoba provinces, Argentina, with different ecological conditions, showed inter-population variability of the 2C-value. The DNA content found in the Corrientes locality (2.41 pg) was higher than that obtained in the Córdoba locality (2.09 pg) which has more stressful environmental conditions than the former. These values are statistically different from those that were found in Glandularia pulchella (Sweet) Tronc. from Corrientes (1.43 pg) and in Glandularia perakii Cov. et Schn from Córdoba (1.47 pg). The DNA content of the diploid F1 hybrids, G. pulchella × G. incisa and G. perakii × G. incisa, differed statistically from the DNA content of the parental species, being intermediate between them. Differences in the frequency of pairing of homoeologous chromosomes were observed in the hybrids; these differences cannot be explained by differences in genome size since hybrids with similar DNA content differ significantly in their meiotic behavior. On the other hand, the differences in the DNA content between the parental species justify the presence of a high frequency of heteromorphic open and closed bivalents and univalents with different size in the hybrids. Key words: Intra-specific DNA content variability, homoeologous pairing, heteromorphic bivalents


2019 ◽  
Vol 100 (5) ◽  
pp. 1250-1260 ◽  
Author(s):  
Benjamin Matthew Skinner ◽  
Claudia Cattoni Rathje ◽  
Joanne Bacon ◽  
Emma Elizabeth Philippa Johnson ◽  
Erica Lee Larson ◽  
...  

Abstract The physical arrangement of chromatin in the nucleus is cell type and species-specific, a fact particularly evident in sperm, in which most of the cytoplasm has been lost. Analysis of the characteristic falciform (“hook shaped”) sperm in mice is important in studies of sperm development, hybrid sterility, infertility, and toxicology. However, quantification of sperm shape differences typically relies on subjective manual assessment, rendering comparisons within and between samples difficult. We have developed an analysis program for morphometric analysis of asymmetric nuclei and characterized the sperm of mice from a range of inbred, outbred, and wild-derived mouse strains. We find that laboratory strains have elevated sperm shape variability both within and between samples in comparison to wild-derived inbred strains, and that sperm shape in F1 offspring from a cross between CBA and C57Bl6J strains is subtly affected by the direction of the cross. We further show that hierarchical clustering can discriminate distinct sperm shapes with greater efficiency and reproducibility than even experienced manual assessors, and is useful both to distinguish between samples and also to identify different morphological classes within a single sample. Our approach allows for the analysis of nuclear shape with unprecedented precision and scale and will be widely applicable to different species and different areas of biology.


1991 ◽  
Vol 57 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Jerry A. Coyne ◽  
John Rux ◽  
Jean R. David

SummaryWe conducted classical genetic analysis of the difference in male genitalia and hybrid sterility between the island-dwelling sibling species Drosophila sechellia and D. mauritiana. At least two loci (one on each autosome) are responsible for the genital difference, with the X chromosome having no significant effect. In contrast, male hybrid sterility is caused by at least four gene loci distributed among all major chromosomes, with those on the X chromosome having the largest effect.We also show that the large difference in ovariole number between D. sechellia and its mainland relative D. simulans is due to at least two gene substitutions, one on each major autosome. The X and the left arm of the second chromosome, however, have no significant effect on the character. This implies that the evolution of reduced ovariole number involved relatively few gene substitutions.These results extend previous findings that morphological differences between Drosophila species are caused by genes distributed among all chromosomes, while hybrid sterility and inviability are due primarily to X-linked genes. Because strong X-effects on male sterility have been found in all three pairwise hybridizations among D. simulans, D. sechellia and D. mauritiana, these effects must have evolved at least twice independently.


2012 ◽  
Vol 71 (2) ◽  
pp. 195-205
Author(s):  
Liliana Vižintin ◽  
Vera Kosovel ◽  
Laura Feoli Chiapella

Summary-Genista sericeaWulfen, a northern Illyrian amphi-Adriatic species, presents a certain morphological variability. To clarify whether the genetic variations support the morphological differences among accessions of different geographic origin, analysis of nuclear DNA content and polymorphism of the internal transcribed spacer (ITS) dataset was studied. The variation in nuclear DNA content ofG. sericeavar.sericeaand var.rigidais minimal (2.09 and 2.08 pg/nucleus respectively) and is correlated with equal chromosome numbers in both varieties. Intraspecific variability of the ITS region was studied on 13 accessions ofG. sericea, 6 belonging to var.sericeaand 7 to var.rigida. These accessions were analyzed in comparison to closely related species already studied. ITS sequences ofG. sericearevealed large polymorphism and formed two main clusters. One cluster (6 accessions) comprehends var.sericeaof northern Italy, Slovenia and northern Croatia; the other cluster (7 accessions) includes five accessions of var.rigidafrom southern Croatia and Montenegro and two from the Pollino massif (southern Italy). The later two accessions considerably differed from other accessions of var.rigida. This genetic analysis supports the previous assumptions, which subdividedG. sericeainto at least two taxa. On the basis of the results presented, it is here suggested that the subdivision ofG. sericeainto var.sericeaand var.rigidashould be maintained.


1998 ◽  
Vol 76 (1) ◽  
pp. 198-204 ◽  
Author(s):  
Robin W Baird ◽  
Pamela M Willis ◽  
Tamara J Guenther ◽  
Paul J Wilson ◽  
Bradley N White

A 60-cm female fetus recovered from a Dall's porpoise (Phocoenoides dalli) found dead in southern British Columbia was fathered by a harbour porpoise (Phocoena phocoena). This is the first report of a hybrid within the family Phocoenidae and one of the first well-documented cases of cetacean hybridization in the wild. In several morphological features, the hybrid was either intermediate between the parental species (e.g., vertebral count) or more similar to the harbour porpoise than to the Dall's porpoise (e.g., colour pattern, relative position of the flipper, dorsal fin height). The fetal colour pattern (with a clear mouth-to-flipper stripe, as is found in the harbour porpoise) is similar to that reported for a fetus recovered from a Dall's porpoise to off California. Hybrid status was confirmed through genetic analysis, with species-specific repetitive DNA sequences of both the harbour and Dall's porpoise being found in the fetus. Atypically pigmented porpoises (usually traveling with and behaving like Dall's porpoises) are regularly observed in the area around southern Vancouver Island. We suggest that these abnormally pigmented animals, as well as the previously noted fetus from California, may also represent hybridization events.


Author(s):  
Nimeshika Pattabiraman ◽  
Mary Morgan-Richards ◽  
Ralph Powlesland ◽  
Steven A. Trewick

AbstractTwo lineages of brushtail possums (Trichosurus vulpecula) were historically introduced to Aotearoa New Zealand, and these two subspecies have different phenotypic forms. Despite over 100 years of potential interbreeding, they appear to retain morphological differences, which may indicate reproductive isolation. We examined this using population samples from a confined landscape and scored each specimen for phenotype using a number of fur colour traits. This resulted in a bimodal trait distribution expected for segregated grey and black lineages. We also sought evidence for genetic partitioning based on spatial and temporal effects. Genetic structure and rates of genetic mixing were determined using seven neutral, species-specific nuclear microsatellite markers and mitochondrial DNA control region sequence. Genotype analyses indicated high levels of variation and mtDNA sequences formed two major haplogroups. Pairwise tests for population differentiation of these markers found no evidence of subdivision, indicating that these brushtail possums behave as a single randomly mating unit. Despite maintenance of two main colour phenotypes with relatively few intermediates, previous inference of assortative mating and anecdotes of distinct races, our data indicate that New Zealand brushtail possums can freely interbreed, and that in some locations they have formed completely mixed populations where neutral genetic markers are unrelated to phenotype. This has implications for effective pest management towards eradication.


Sign in / Sign up

Export Citation Format

Share Document