Tolerance of Cantaloupe to Postemergence Applications of Rimsulfuron and Halosulfuron

2007 ◽  
Vol 21 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Charles W. Meister

Field trials were conducted in the spring of 2004 and the spring and summer of 2005 to evaluate cantaloupe tolerance to rimsulfuron and halosulfuron applied to cantaloupe at the two-leaf stage, five- to six-leaf stage, plants having 30- to 40-cm vines, and plants having up to 5-cm-diam melons. Additionally, control of eight weed species was evaluated in these trials in 2005. Cantaloupe plant injury from rimsulfuron differed among application timings and trials, but applications were generally more injurious when applied at the two early crop stages. Halosulfuron was less injurious to cantaloupe, but 31 and 14% injury occurred following the two-leaf and five- to six-leaf applications, respectively, in the second trial in 2005. In the first trial of 2005, number of marketable melons the first week of harvest was lower for all halosulfuron applications compared with the nontreated control (30 to 37% reduction). In the second trial of 2005, total number of marketable melons was comparable to the nontreated control for each of the halosulfuron treatments, except the five- to six-leaf and up to 5-cm-diam melon applications. Injury estimates were poor indicators of occurrence or absence of delays in crop earliness or number of marketable melons. Rimsulfuron was generally effective (≥ 80% control) in controlling seedling Texas panicum, large crabgrass, tall morningglory, pitted morningglory, and Palmer amaranth, but was ineffective against yellow and purple nutsedge and goosegrass. Halosulfuron was effective in controlling yellow and purple nutsedge, but was ineffective against Texas panicum, large crabgrass, goosegrass, pitted morningglory, tall morningglory, and Palmer amaranth.

Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Wesley J. Everman ◽  
Walter E. Thomas ◽  
James D. Burton ◽  
Alan C. York ◽  
John W. Wilcut

Greenhouse studies were conducted to evaluate absorption, translocation, and metabolism of14C-glufosinate in glufosinate-resistant cotton, nontransgenic cotton, Palmer amaranth, and pitted morningglory. Cotton plants were treated at the four-leaf stage, whereas Palmer amaranth and pitted morningglory were treated at 7.5 and 10 cm, respectively. All plants were harvested at 1, 6, 24, 48, and 72 h after treatment (HAT). Absorption of14C-glufosinate was greater than 85% 24 h after treatment in Palmer amaranth. Absorption was less than 30% at all harvest intervals for glufosinate-resistant cotton, nontransgenic cotton, and pitted morningglory. At 24 HAT, 49 and 12% of radioactivity was translocated to regions above and below the treated leaf, respectively, in Palmer amaranth. Metabolites of14C-glufosinate were detected in all crop and weed species. Metabolism of14C-glufosinate was 16% or lower in nontransgenic cotton and pitted morningglory; however, metabolism rates were greater than 70% in glufosinate-resistant cotton 72 HAT. Intermediate metabolism was observed for Palmer amaranth, with metabolites comprising 20 to 30% of detectable radioactivity between 6 and 72 HAT.


Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Wesley J. Everman ◽  
Cassandra R. Mayhew ◽  
James D. Burton ◽  
Alan C. York ◽  
John W. Wilcut

Greenhouse studies were conducted to evaluate14C-glufosinate absorption, translocation, and metabolism in glufosinate-resistant corn, goosegrass, large crabgrass, and sicklepod. Glufosinate-resistant corn plants were treated at the four-leaf stage, whereas goosegrass, large crabgrass, and sicklepod were treated at 5, 7.5, and 10 cm, respectively. All plants were harvested at 1, 6, 24, 48, and 72 h after treatment (HAT). Absorption was less than 20% at all harvest intervals for glufosinate-resistant corn, whereas absorption in goosegrass and large crabgrass increased from approximately 20% 1 HAT to 50 and 76%, respectively, 72 HAT. Absorption of14C-glufosinate was greater than 90% 24 HAT in sicklepod. Significant levels of translocation were observed in glufosinate-resistant corn, with14C-glufosinate translocated to the region above the treated leaf and the roots up to 41 and 27%, respectively. No significant translocation was detected in any of the weed species at any harvest timing. Metabolites of14C-glufosinate were detected in glufosinate-resistant corn and all weed species. Seventy percent of14C was attributed to glufosinate metabolites 72 HAT in large crabgrass. Less metabolism was observed for sicklepod, goosegrass, and glufosinate-resistant corn, with metabolites composing less than 45% of detectable radioactivity 72 HAT.


2009 ◽  
Vol 23 (2) ◽  
pp. 280-286 ◽  
Author(s):  
Sanjeev K. Bangarwa ◽  
Jason K. Norsworthy ◽  
Edward E. Gbur

Weeds are a major constraint in tomato production, especially in the absence of methyl bromide. Field trials were conducted in 2006 and 2007 to evaluate the integrated use of a mustard ‘Caliente’ (a blend of brown and white mustard) cover crop with one-half and full rate PRE/POST herbicides for weed control and crop response in polyethylene-mulched tomato. Caliente was flail mowed and incorporated into the soil prior to forming beds. PRE herbicides were applied under polyethylene mulch, and POST herbicides were sprayed over the top of tomato. Full rates for S-metolachlor, halosulfuron, and trifloxysulfuron were 1,600, 27, and 7.9 g ai/ha, respectively. Caliente had no effect on weed control or tomato injury and yield. Except for large crabgrass control and tomato injury and yield, only the main effect of herbicide selection and application rate affected these parameters. Tomato injury was minimal (< 6%) from PRE- and POST-applied herbicides. S-metolachlor applied PRE provided 66% purple nutsedge, 67% yellow nutsedge, and 77% Palmer amaranth control at 4 wk after transplanting (WATP). S-metolachlor–treated plots at the full rate produced the highest marketable fruit yield among herbicide treatments, with jumbo fruit yield equivalent to the hand-weeded treatment. Trifloxysulfuron was the best POST-applied herbicide based on marketable yield and weed control. POST-applied trifloxysulfuron provided 41% purple nutsedge, 58% yellow nutsedge, and 55% Palmer amaranth control at 8 to 9 WATP. Halosulfuron applied PRE controlled purple and yellow nutsedge 70 and 78%, respectively, at 4 WATP, and POST-applied halosulfuron controlled purple nutsedge 74% and yellow nutsedge 78% at 8 to 9 WATP. Halosulfuron applied either PRE or POST failed to control Palmer amaranth and large crabgrass. Greater weed control and marketable tomato yield were achieved with full rates of herbicides. This research demonstrates no additional advantage of Caliente mustard when used with herbicides in tomato. None of the PRE or POST herbicides applied alone were sufficient to maintain season-long, broad-spectrum weed control and optimum marketable yield in tomato. Therefore, integration of PRE and POST herbicides at full rates is suggested.


2009 ◽  
Vol 23 (4) ◽  
pp. 574-580 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Kenneth L. Smith ◽  
Lawrence E. Steckel ◽  
Clifford H. Koger

Cotton gins in Arkansas, western Tennessee, and western Mississippi were sampled for weed seed contamination of gin trash in fall 2007. A total of 473 samples were collected, with 453 samples from Arkansas. The objectives of this research were to determine the weed species most frequently found in gin trash and determine what means gin operators are using to dispose of gin trash. There were 25 weed species found in the gin trash samples—11 grass and 14 broadleaf weeds. Grass and broadleaf weeds were present in 41.4 and 8.5% of the samples, respectively. The most frequently found species were large crabgrass (19.0%), barnyardgrass (14.0%), goosegrass (12.9%), red sprangletop (8.2%) and Palmer amaranth (4.2%). Viable seeds of barnyardgrass, large crabgrass, Palmer amaranth, and prickly sida were present in the surface layer (0- to 25-cm depth) of gin trash piles after 1 yr of composting. Viable Palmer amaranth seeds were present in the surface layer of gin trash piles after 2 yr of composting, but no germinable seeds were found deeper than 25 cm following 1 yr of composting. Gin trash disposal involved application of the material to crop fields during the fall or winter months; composting followed by application of the compost as mulch or a soil amendment to gardens, flower beds, or crop fields; use as cattle feed; and coverage for landfills to reduce erosion and encourage growth of vegetation. Because of the demonstrated potential for weed seed dispersal via gin trash, including composted material, development of technologies to ensure disposal of a gin-trash product free of viable weed seed are justified.


2016 ◽  
Vol 30 (1) ◽  
pp. 116-122 ◽  
Author(s):  
Pratap Devkota ◽  
Fred Whitford ◽  
William G. Johnson

Water is the primary carrier for herbicide application, and carrier-water–related factors can influence herbicide performance. In a greenhouse study, premixed formulation of glyphosate plus dicamba was mixed in deionized (DI) water at 5, 18, 31, 44, or 57 C and applied immediately. In a companion study, glyphosate and dicamba formulation was mixed in DI water at temperatures of 5, 22, 39, or 56 C and sprayed after the herbicide solution was left at the respective temperatures for 0, 6, or 24 h. In both studies, glyphosate plus dicamba was applied at 0.275 plus 0.137 kg ae ha−1(low rate), and 0.55 plus 0.275 kg ha−1(high rate), respectively, to giant ragweed, horseweed, Palmer amaranth, and pitted morningglory. Glyphosate plus dicamba applied at a low rate with solution temperature of 31 C provided 14% and 26% greater control of giant ragweed and pitted morningglory, respectively, compared to application at solution temperature of 5 C. At both rates of glyphosate and dicamba formulation, giant ragweed and pitted morningglory control was 15% or greater at solution temperature of 44 C compared to 5 C. Weed control was not affected with premixture of glyphosate and dicamba applied ≤ 24 h after mixing herbicide. When considering solution temperature, glyphosate and dicamba applied at low rate provided 13 and 6% greater control of Palmer amaranth and pitted morningglory, respectively, with solution temperature of 22 C compared to 5 C. Similarly, giant ragweed control was 8% greater with solution temperature of 39 C compared to 5 C. Glyphosate and dicamba applied at high rate provided 8% greater control of giant ragweed at solution temperature of 22 or 39 C compared to 5 C. Therefore, activity of premixed glyphosate and dicamba could be reduced with spray solution at lower temperature; however, the result is dependent on weed species.


2015 ◽  
Vol 29 (3) ◽  
pp. 587-595 ◽  
Author(s):  
Nicholas E. Korres ◽  
Jason K. Norsworthy ◽  
Muthukumar V. Bagavathiannan ◽  
Andy Mauromoustakos

A survey was conducted in 2012 across 13 counties in the eastern Arkansas–Mississippi Delta area on 489 randomly selected road sites to assess the distribution of the most commonly occurring arable weeds. Among the 36 species recorded, Palmer amaranth, johnsongrass, large crabgrass, barnyardgrass, prickly sida, and broadleaf signalgrass were the top six weed species, occurring at 313, 294, 261, 238, 176, and 136 sites, respectively. Barnyardgrass, johnsongrass, and Palmer amaranth were present at 34, 32, and 31% of all sampling occasions (site by roadside topographical characteristic). Habitat preferences varied between weed species. Palmer amaranth, large crabgrass, and johnsongrass exhibited a preference for disturbed habitats as well as field shoulders. Conversely, barnyardgrass, yellow nutsedge, hemp sesbania, and giant ragweed exhibit a preference for moist environments similar to these found in roadside ditches. Herbicide use on roadsides is subject to many environmental regulations and public concerns that, in combination with the evolution of herbicide resistance, necessitate an effective plan for managing agronomically important weed species on eastern Arkansas–Mississippi Delta roadsides.


2005 ◽  
Vol 19 (3) ◽  
pp. 623-628 ◽  
Author(s):  
Harlene M. Hatterman-Valenti

Few weed management options are available for juneberry, which has limited the potential for this new crop. Field trials were initiated at three locations in North Dakota to evaluate efficacy and crop safety associated with chemical and physical weed control treatments applied just before or immediately after transplanting. All treatments except norflurazon and trifluralin provided at least 85% control of redroot pigweed, common lambsquarters, common purslane, and yellow foxtail for the duration of the trial at Absaraka, ND, during 2001. Stinkgrass weed control 8 wk after treatment (WAT) dropped to unacceptable levels (<85%) with all treatments except azafenidin at 0.5 kg ai/ ha, norflurazon, and oxyfluorfen at 1.1 kg ai/ha at Dawson, ND, during 2001. However, juneberry injury 4 WAT by azafenidin at 0.5 kg/ha, flumioxazin at both locations, or azafenidin at 0.34 kg/ha and oxyfluorfen at 1.1 kg ai/ha at Absaraka, ND, was greater than observed for plants within the physical treatments. Juneberry injury generally decreased with time, yet remained >20% at 8 WAT for azafenidin and flumioxazin at Absaraka, ND, and for all treatments except the mulches at Dawson, ND. Plant injury 8 WAT at Absaraka in 2002 was 10% or less for all treatments and was lower compared with 2001. All physical treatments—azafenidin at 0.34 and 0.5 kg/ha, flumioxazin at 0.29 kg/ha, and oryzalin at 4.5 kg/ha—provided at least 85% control of all weed species at Carrington and Absaraka, ND, during 2002.


2015 ◽  
Vol 29 (2) ◽  
pp. 263-273
Author(s):  
Leslie L. Beck ◽  
Aaron J. Patton ◽  
Quincy D. Law ◽  
Daniel V. Weisenberger ◽  
James T. Brosnan ◽  
...  

Mesotrione, a 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide, is labeled for PRE and POST crabgrass control. It has enhanced efficacy on smooth and large crabgrass when applied in conjunction with soil-applied nitrogen (N). The objectives of this study, using crabgrass as the weed species, were to (1) determine the influence of N rate and tissue N concentration on mesotrione activity, (2) determine the influence of N source on mesotrione activity, and (3) determine the influence of N application timing on mesotrione activity. Large crabgrass plants that received 12 kg N ha−1or more before mesotrione application had more bleached and necrotic leaves compared with plants that received 0 kg N ha−17 d after treatment (DAT) in the greenhouse. Although N application rates as high as 98 kg N ha−1were tested, 90% leaf bleaching and necrosis were observed with rates of 8.9 or 10.1 kg N ha−1in Tennessee and Indiana, respectively. Nitrogen concentration in large crabgrass leaf and stem tissue on the day of the mesotrione application was closely related to the bleaching and necrosis symptoms observed 7 DAT. Although N rate influenced mesotrione activity, N source did not. Nitrogen application timing was also important, with N applications 3, 1, and 0 d before a mesotrione application having the highest percentage of bleached and necrotic leaves in greenhouse experiments. Both greenhouse and field trials support the finding that N applications in proximity to the mesotrione application enhance herbicide activity. Thus, practitioners can pair N and POST mesotrione applications together or in proximity to enhance crabgrass control.


2009 ◽  
Vol 23 (1) ◽  
pp. 171-174 ◽  
Author(s):  
Derek M. Scroggs ◽  
Donnie K. Miller ◽  
Alexander M. Stewart ◽  
B. Rogers Leonard ◽  
James L. Griffin ◽  
...  

Field trials were conducted during 2006 and 2007 and a container study was performed twice in 2007 at the Dean Lee Research and Extension Center in Alexandria, LA to evaluate the interaction of glyphosate and zinc coapplied to selected weeds. Across all experiments, no differences in either visible weed control or weed fresh weight were detected among glyphosate formulations. In the field studies, weed control was greatest when glyphosate was applied alone, in which case control of barnyardgrass, browntop millet, and Palmer amaranth ranged between 93 and 95%. When glyphosate was coapplied with formulations of zinc, control of the aforementioned weed species was reduced to 39, 39, and 45%, respectively. Visual estimates of weed control in the container studies showed glyphosate performance to be the highest (82 to 98%) in the absence of zinc for control of barnyardgrass, browntop millet, johnsongrass, ivyleaf morningglory, and redroot pigweed. Across all weed species, control was reduced 43 to 59% when zinc was coapplied with glyphosate. Similar results were noted in reduction of weed fresh weights. Results indicate that glyphosate-based weed control is reduced when coapplied with the zinc products at their current use rates. Producers should be aware of this antagonism and these coapplications should not be recommended.


1999 ◽  
Vol 13 (2) ◽  
pp. 411-420 ◽  
Author(s):  
A. Stanley Culpepper ◽  
Alan C. York

Weed management systems were compared in bromoxynil-resistant, glyphosate-resistant, and nontransgenic cotton. A standard system of pendimethalin preplant incorporated (PPI), fluometuron preemergence (PRE), fluometuron plus MSMA early postemergence-directed (POST-DIR), and cyanazine plus MSMA late POST-DIR in combination with cultivation controlled broadleaf signalgrass, large crabgrass, common lambsquarters, jimsonweed, pitted morningglory, prickly sida, sicklepod, and smooth pigweed 98 to 100% late season. Weed control, cotton yield, and net returns were similar when pyrithiobac or bromoxynil plus MSMA postemergence (POST) replaced fluometuron plus MSMA POST-DIR. Fluometuron PRE had little to no effect in bromoxynil systems. Glyphosate POST to three- to four-leaf-stage cotton followed by cyanazine plus MSMA late POST-DIR and cultivation controlled weeds 96 to 100%. Glyphosate POST followed by glyphosate POST-DIR and cultivation controlled pitted morningglory and large crabgrass 89 to 90% and other species at least 94%. Yields and net returns at one location were similar for glyphosate applied twice or glyphosate POST followed by cyanazine plus MSMA POST-DIR and the standard system. Pendimethalin plus fluometuron in glyphosate systems did not increase yield or net returns. At a location severely infested with large crabgrass, pendimethalin plus fluometuron in glyphosate systems increased yield 37 to 44% and net returns 85 to 108%, respectively, when glyphosate was applied to cotton at the three-to four-leaf stage, but not if glyphosate was applied to cotton at the one-leaf stage. Yield and net returns were similar when bromoxynil-resistant, glyphosate-resistant, and nontransgenic cotton were treated using the standard system.


Sign in / Sign up

Export Citation Format

Share Document