Effectiveness of Preemergence Herbicide and Postemergence Glyphosate Programs in Second-Generation Glyphosate-Resistant Cotton

2007 ◽  
Vol 21 (4) ◽  
pp. 877-881 ◽  
Author(s):  
Derek M. Scroggs ◽  
Donnie K. Miller ◽  
James L. Griffin ◽  
John W. Wilcut ◽  
David C. Blouin ◽  
...  

A study was conducted in 2004 and 2005 to evaluate the benefit of applying fluometuron PRE versus glyphosate-only POST programs in second-generation GR cotton (Roundup Ready Flex®). Fluometuron was either included or excluded with POST application timings of glyphosate at the following cotton growth stages: (1) 3 leaf (lf) followed by (fb) 7 lf fb 14 lf (over the top) OT (2) 3 fb 7 lf OT (3) 7 lf OT fb 14 lf postemergence directed (PD), and (4) 7 fb 14 lf OT. Control of goosegrass, Palmer amaranth, pitted morningglory, sicklepod, and smellmelon was increased 2 to 8 percentage points with the addition of fluometuron PRE. The inclusion of fluometuron PRE did not improve control of barnyardgrass, browntop millet, hemp sesbania, johnsongrass, or redroot pigweed and control ranged from 81% to 84%, 69% to 75%, 94% to 94%, 87% to 89%, and 92% to 93%, respectively. By 56 d after the last POST application, control of johnsongrass, Palmer amaranth, pitted morningglory, and smellmelon was at least 83%, 93%, 92%, and 86%, respectively, with only slight differences noted among POST glyphosate programs. Control of barnyardgrass, browntop millet, and redroot pigweed was 68%, 47%, 86%, respectively, with the POST glyphosate program of 3 fb 7 lf OT, which was significantly less than all other glyphosate POST programs. Cotton yield increased 32% and 36% with the addition of fluometuron PRE to glyphosate POST programs consisting of 7 lf OT fb 14 lf PD and 7 lf fb 14 lf OT, respectively. Cotton yield for other glyphosate POST programs including an earlier 3 lf application was not improved when fluometuron was applied PRE. Without inclusion of fluometuron PRE, yield was maximized with the glyphosate POST program that included three applications of glyphosate (2,510 kg/ha). Overall, this research emphasizes the fact that weed control is important in the early season as well as in the late season in second-generation GR cotton.

2007 ◽  
Vol 21 (4) ◽  
pp. 997-1001 ◽  
Author(s):  
Derek M. Scroggs ◽  
Donnie K. Miller ◽  
James L. Griffin ◽  
Lawrence E. Steckel ◽  
David C. Blouin ◽  
...  

Field studies were conducted 2004 and 2005 to evaluate weed control following POST applications of glyphosate in combination with eitherS-metolachlor (premix formulation), pyrithiobac, or trifloxysulfuron in conjunction with glyphosate in second-generation glyphosate-resistant cotton (Roundup Ready Flex). These herbicides were applied in combination with glyphosate in a two-application program at the 2-leaf (LF) (followed by glyphosate alone at the 10-LF growth stage), 6-LF (following glyphosate alone at the 2-LF growth stage), or 10-LF (following glyphosate alone at the 2-LF growth stage) cotton growth stages. No differences in weed control between residual herbicide were observed for goosegrass, hemp sesbania, Johnsongrass, Palmer amaranth, redroot pigweed, sicklepod, or smellmelon. Optimum control of barnyardgrass and browntop millet was achieved with glyphosate plusS-metolachlor. No differences were observed among application timings for control of goosegrass, hemp sesbania, Johnsongrass, pitted morningglory, and smellmelon. Control of barnyardgrass, browntop millet, Palmer amaranth, redroot pigweed, and sicklepod was optimized with residual herbicide application at the 2- or 10-LF timing. No yield differences were observed between residual herbicides, and seed cotton yield averaged 2,800 kg/ha. Yield was maximized when residual herbicide was applied at the 2- or 10-LF growth stage (2,960 to 2,730 kg/ha). Analysis based on numerical yield at particular residual-herbicide application timings and calculated yield for each timing based on the percentage of a standard three-application glyphosate program indicated the most consistent residual-herbicide timing for optimizing yield in a reduced-input Roundup Ready Flex weed-control program occurred at the two-leaf growth stage. All reduced-input programs, however, resulted in cotton yield of at least 93% of that obtained with the standard program.


2007 ◽  
Vol 21 (1) ◽  
pp. 37-40 ◽  
Author(s):  
Robert J. Richardson ◽  
Henry P. Wilson ◽  
Gregory R. Armel ◽  
Thomas E. Hines

Field studies were conducted in 1999, 2000, and 2001 to evaluate cotton response to trifloxysulfuron applied postemergence over the top (POT) or postemergence-directed (PDIR) at various growth stages. Treatments included trifloxysulfuron at 3.8 or 7.5 g ai/ha plus nonionic surfactant (NIS) applied POT to one-, three-, and five-leaf cotton or applied PDIR to 30- and 45-cm tall cotton. Crop injury 7 d after treatment (DAT) varied by year and ranged from 17 to 50%, 19 to 46%, and 5 to 23% with trifloxysulfuron applied POT to one-, three-, and five-leaf cotton, respectively. Injury 21DAT averaged 22, 16, and 6% with one-, three-, and five-leaf applications respectively. Trifloxysulfuron applied PDIR injured cotton 2 to 9% 7 DAT and 0 to 12% 21 DAT. At 30 DAT, cotton height was reduced with one-leaf trifloxysulfuron application, whereas differences were not present across other treatments. Heights at 90 days after planting (DAP) did not differ between treatments. Neither trifloxysulfuron rate or application timing negatively affected cotton yield or fiber quality.


1991 ◽  
Vol 5 (3) ◽  
pp. 493-498 ◽  
Author(s):  
Charles E. Snipes ◽  
Joe E. Street ◽  
Thomas C. Mueller

Cotton response to triclopyr was evaluated when it was applied over-the-top at simulated drift rates to pin-head square and early bloom cotton growth stages in 1987 and 1988. The herbicidal effects of triclopyr were most evident after a lag period of 10 to 15 d. Triclopyr at 60 g ai ha-1applied at pin-head square reduced cotton height in 1987, but not in 1988. Triclopyr applied at pin-head square and early bloom reduced cotton flowering initially, as measured by white bloom counts, in both years. Total blooms were reduced in 1987, but not in 1988. Cotton maturity was delayed by triclopyr application during early bloom, as shown by a decrease in percent open bolls, and a decrease in first pick cotton yields. Cotton yield was lower in plots receiving triclopyr, with the greatest yield reduction caused by a 60 g ha-1triclopyr application at early bloom.


1993 ◽  
Vol 7 (1) ◽  
pp. 159-162 ◽  
Author(s):  
David L. Jordan ◽  
Robert E. Frans ◽  
Marilyn R. McClelland

Field experiments were conducted from 1989 through 1991 to determine the effect of DPX-PE350 applied postemergence over-the-top on cotton yield and fiber quality. DPX-PE350, at rates ranging from 50 to 280 g ae ha−1applied to cotton in the VC to R6 growth stages, had no adverse effect on seed cotton yield, micronaire, fiber length, fiber length uniformity, or fiber strength. Cotton injury was 10% or less in all experiments.


2009 ◽  
Vol 23 (3) ◽  
pp. 356-362 ◽  
Author(s):  
A. Stanley Culpepper ◽  
Alan C. York ◽  
Phillip Roberts ◽  
Jared R. Whitaker

Field experiments were conducted in Georgia to evaluate weed control and crop tolerance with glufosinate applied to ‘PHY 485 WRF®’ cotton. This glyphosate-resistant cotton also contains a gene, used as a selectable marker, for glufosinate resistance. Three experiments were maintained weed-free and focused on crop tolerance; a fourth experiment focused on control of pitted morningglory and glyphosate-resistant Palmer amaranth. In two experiments, PHY 485 WRF cotton was visibly injured 15 and 20% or less by glufosinate ammonium salt at 430 and 860 g ae/ha, respectively, applied POST two or three times. In a third experiment, glufosinate at 550 g/ha injured cotton up to 36%. Pyrithiobac or glyphosate mixed with glufosinate did not increase injury compared to glufosinate applied alone;S-metolachlor mixed with glufosinate increased injury by six to seven percentage points. Cotton injury was not detectable 14 to 21 d after glufosinate application, and cotton yields were not reduced by glufosinate or glufosinate mixtures. A program of pendimethalin PRE, glyphosate applied POST twice, and diuron plus MSMA POST-directed controlled glyphosate-resistant Palmer amaranth only 17% late in the season.S-metolachlor included with the initial glyphosate application did not increase control, and pyrithiobac increased late-season control by only 13 percentage points. Palmer amaranth was controlled 90% or more when glufosinate replaced glyphosate in the aforementioned system. Pitted morningglory was controlled 99% by all glufosinate programs and mixtures of glyphosate plus pyrithiobac. Seed cotton yields with glufosinate-based systems were at least 3.3 times greater than yields with glyphosate-based systems because of differences in control of glyphosate-resistant Palmer amaranth.


2005 ◽  
Vol 19 (2) ◽  
pp. 404-410 ◽  
Author(s):  
Jeffrey W. Branson ◽  
Kenneth L. Smith ◽  
James L. Barrentine

Field studies were conducted in 2000 and 2001 at Rohwer, AR. Trifloxysulfuron (5.3 and 8 g ai/ha) and pyrithiobac (70 g ai/ha) were applied preemergence (PRE) and postemergence (POST) broadcast at the two- to three-leaf (EP) and three- to four-leaf (MP) cotton growth stages. Both materials were also applied POST in combination with glyphosate at 560 g ae/ha or bromoxynil at 560 g ai/ha at both growth stages. Trifloxysulfuron applied EP or MP at 8 g/ha provided greater control of sicklepod and pitted morningglory 28 d after application (DAA) than trifloxysulfuron at 5.3 g/ha or pyrithiobac at 70 g/ha; however, control of prickly sida was greater with pyrithiobac than with trifloxysulfuron at either rate. Glyphosate alone controlled sicklepod, prickly sida, and pitted morningglory greater than 80%. The addition of trifloxysulfuron at 8 g/ha and pyrithiobac at 70 g/ ha increased control of all species over glyphosate alone 28 DAA. Bromoxynil at 560 g/ha controlled pitted morningglory and hemp sesbania at all application timings; however, sicklepod and Palmer amaranth control was less than 50% with bromoxynil applied alone. When bromoxynil was applied in combination with trifloxysulfuron at either rate, control of sicklepod and Palmer amaranth increased to 80% or greater at all application timings. Trifloxysulfuron has the potential to complement both the glyphosate-resistant and bromoxynil-resistant weed control programs by providing control of less susceptible weeds and by providing residual control to both programs.


2010 ◽  
Vol 24 (3) ◽  
pp. 289-294 ◽  
Author(s):  
Jonathan A. Huff ◽  
Daniel B. Reynolds ◽  
Darrin M. Dodds ◽  
J. Trenton Irby

Glyphosate applied to glyphosate-resistant (RR) cotton varieties after the four-leaf stage can decrease boll retention resulting in severe yield reductions. Enhanced glyphosate-resistant cotton (RR Flex), released for commercial use in 2006, offers a wider window of glyphosate applications without the risk of yield loss. However, no data exist regarding the effect of glyphosate application, especially late season applications, on fruit partitioning in RR Flex cotton. The objective of this research was to determine the effect of glyphosate rate and application timing on RR Flex cotton yield and fruit partitioning compared with current RR cotton. Studies were conducted during a 3-yr period (2004 to 2006), throughout the cotton growing regions of Mississippi. Roundup Ready (ST 4892 Bollgard/Roundup Ready [BR]) and Roundup Ready Flex (Mon 171 Enhanced Roundup Ready and ST 4554 Bollgard II/Roundup Ready Flex [B2RF]) cotton was planted, and glyphosate was applied at various rates and cotton growth stages. Data were collected using box mapping, a technique designed to depict yield partitioning on a cotton plant. RR Flex cotton yields were unaffected by glyphosate application timing or rate. Yields for ST 4892 BR were affected by application timings after the sixth leaf. ST 4892 BR had increased yield partitioning to position-three bolls and upper nodes with later application timings of glyphosate. Increases in seed cotton partitioned to higher nodes and outer fruiting positions were unable to compensate for fruit shed from innermost, lower fruiting sites. These data indicate that RR Flex cotton has excellent tolerance to late-season glyphosate applications.


2005 ◽  
Vol 19 (3) ◽  
pp. 719-723 ◽  
Author(s):  
Donnie K. Miller ◽  
Robert G. Downer ◽  
E. Burris ◽  
B. Rogers Leonard ◽  
Bill J. Williams

Coapplication of herbicides and insecticides affords growers an opportunity to control multiple pests with one application, given that efficacy is not compromised. Glufosinate was applied at 470 g ai/ha both alone and in combination with the insecticides acephate, acetamiprid, bifenthrin, cyfluthrin, dicrotophos, emamectin benzoate, imidacloprid, indoxacarb, lambda-cyhalothrin, methoxyfenozide, spinosad, or thiamethoxam to determine coapplication effects on control of some of the more common and/or troublesome broadleaf weeds infesting cotton. Hemp sesbania, pitted morningglory, prickly sida, redroot pigweed, and sicklepod were treated at the three- to four- or the seven- to eight-leaf growth stage. When applied at the earlier application timing, glufosinate applied alone provided complete control at 14 d after treatment, and control was unaffected by coapplication with insecticides. When glufosinate application was delayed to the later application timing, visual weed control was unaffected by insecticide coapplication. Fresh-weight reduction from the herbicide applied to larger weeds was negatively impacted by addition of the insecticides dicrotophos and imidacloprid with respect to redroot pigweed and prickly sida, but only in one of two experiments. In most cases, delaying application of glufosinate to larger weeds resulted in reduced control compared to that from a three- to four-leaf application, with the extent of reduction varying by species. Results indicate that when applied according to the herbicide label (three- to four-leaf stage), glufosinate/ insecticide coapplications offer producers the ability to integrate pest management strategies and to limit application costs without sacrificing control of the broadleaf weeds evaluated.


1997 ◽  
Vol 11 (2) ◽  
pp. 335-345 ◽  
Author(s):  
A. Stanley Culpepper ◽  
Alan C. York

An experiment was conducted at four locations in North Carolina during 1994 and 1995 to evaluate weed control, cotton yield, fiber quality, and net returns in no-tillage bromoxynil-tolerant cotton. The experiment focused on using bromoxynil or pyrithiobac sodium applied early POST over-the-top as alternatives to fluometuron plus MSMA applied early POST directed. Fluometuron plus MSMA was more effective than bromoxynil or pyrithiobac sodium on tall morningglory, large crabgrass, goosegrass, and broadleaf signalgrass. Bromoxynil and fluometuron plus MSMA were similarly effective on common lambsquarters, common ragweed, and eclipta and more effective than pyrithiobac sodium. Pyrithiobac sodium and fluometuron plus MSMA were similarly effective on smooth pigweed and Palmer amaranth and more effective than bromoxynil. Prickly sida control by bromoxynil and pyrithiobac sodium was equal to or greater than control by fluometuron plus MSMA. All early POST herbicides controlled pitted morningglory similarly. Regardless of the early POST herbicides used, fluometuron applied PRE and cyanazine plus MSMA applied late POST directed increased control of most weeds and increased cotton yield and net returns. Bromoxynil and pyrithiobac sodium effectively substituted for fluometuron plus MSMA only in systems that included fluometuron applied PRE and cyanazine plus MSMA applied late POST directed. Effects of herbicide systems on cotton fiber quality were minor.


2019 ◽  
Vol 33 (04) ◽  
pp. 569-577 ◽  
Author(s):  
Chris J. Meyer ◽  
Jason K. Norsworthy

AbstractWeed size can nfluence herbicide performance and herbicide interactions in mixtures. To control a broad range of species in soybean or cotton, POST herbicide mixtures will likely be commonplace in Roundup Ready® XtendFlex® and Enlist™ technologies. The impact of weed size on herbicide interactions that could occur in Roundup Ready XtendFlex or Enlist crops was assessed in two field experiments conducted in 2015 and 2016 at the Northeast Research and Extension Center in Keiser, AR. Combinations of glufosinate, glyphosate, dicamba, and 2,4-D were applied to either 10-cm or 30-cm weeds and evaluated for percent weed control, height reduction, and density reduction, collected 5 wk after treatment. Colby’s method was used to analyze treatments for herbicide interactions for control of barnyardgrass, Palmer amaranth, and pitted morningglory. Antagonism was identified with at least one treatment on all species. Almost all treatments were antagonistic for percent weed control, height reduction, and density reduction on barnyardgrass. When glyphosate in mixture with 2,4-D or dicamba was applied to 30-cm barnyardgrass, control declined 9% for both mixtures relative to glyphosate alone. Glufosinate plus glyphosate was antagonistic when applied to both 30-cm pitted morningglory and barnyardgrass. Glufosinate plus dicamba provided less control and density reduction of Palmer amaranth than what was expected from Colby’s equation. Overall, antagonism was more likely to be identified when applications were made to 30-cm weeds compared with 10-cm weeds. The utility of a given herbicide mixture will depend on the species present in the field and the size of those species at the time of application.


Sign in / Sign up

Export Citation Format

Share Document