Characterization of Fluazifop-P-butyl Tolerance in Zoysiagrass Cultivars

2014 ◽  
Vol 28 (2) ◽  
pp. 385-394 ◽  
Author(s):  
Ramon G. Leon ◽  
J. Bryan Unruh ◽  
Barry J. Brecke ◽  
Kevin E. Kenworthy

POST control of grass weed species and contaminant turfgrass species, such as common and hybrid bermudagrass, is a major challenge in zoysiagrass. Fluazifop-P-butyl is a POST herbicide that can provide selective grass weed control with limited injury to zoysiagrass. However, because of the extent of genetic variation among zoysiagrass cultivars, it was proposed that fluazifop-P-butyl tolerance was cultivar dependent. Dose–response field studies were conducted in Jay, FL, in 2012 and 2013, evaluating the tolerance of 11 commercial zoysiagrass cultivars and common bermudagrass to 0, 44, 88, 131, 175, and 263 g ai ha−1of fluazifop-P-butyl. ‘Empire' and ‘Meyer' zoysiagrass were injured 30% or less at 2 wk after treatment (WAT) when treated with 131 g ha−1of fluazifop-P-butyl or less. Conversely, ‘Zeon' and ‘PristineFlora' reached from 30 to more than 50% injury between 2 and 4 WAT with 44 and 88 g ha−1fluazifop-P-butyl. ‘Geo', ‘Crowne', ‘JaMur', and ‘UltimateFlora' showed intermediate injury (i.e. ≤ 60% with 175 and 264 g ha−1) and a recovery period longer than 4 WAT. ‘Emerald', ‘Palisades', and ‘Royal' also showed intermediate injury (i.e., 30 to 65% with 175 and 264 g ha−1), which peaked at 2 WAT and then rapidly declined below 25% injury at 4 WAT. By 8 WAT, all zoysiagrass cultivars had recovered, and no injury was observed. Results from a greenhouse experiment demonstrated that differences observed in the field were cultivar related, especially for the lower tolerance level observed in Zeon and PristineFlora. There is potential to increase fluazifop-P-butyl tolerance in zoysiagrass because of the observed variation among 80 zoysiagrass breeding lines.

2013 ◽  
Vol 14 (1) ◽  
pp. 31 ◽  
Author(s):  
Imana L. Power ◽  
Albert K. Culbreath ◽  
Barry L. Tillman

Peanut rust, caused by Puccinia arachidis Speg, is an important foliar disease of peanut (Arachis hypogaea L.) in tropical countries. The best option for disease management is host resistance. The objectives of this project included characterizing peanut genotypes for resistance to P. arachidis, assessing the genetic variation of newly developed Collaborative Research and Support Program (CRSP) peanut breeding lines, and assessing genetic variability among P. arachidis populations. In field studies conducted over 2010-2011, several CRSP breeding lines demonstrated varying levels of rust resistance. Detached leaf assays were used to examine the components of resistance to P. arachidis. Few significant differences were observed in these studies. We used SSR markers to characterize newly developed CRSP breeding lines, plant introductions, and commonly grown cultivars. The SSR markers used detected polymorphisms but were not able to distinguish resistant from susceptible peanut genotypes. Sequences of the 5.8S-ITS2-28S region of P. arachidis isolates collected from different regions in the United States and other countries do not indicate high genetic variability among the populations. Accepted for publication 23 September 2013. Published 25 November 2013.


2020 ◽  
pp. 1-5
Author(s):  
Tameka L. Sanders ◽  
Jason A. Bond ◽  
Benjamin H. Lawrence ◽  
Bobby R. Golden ◽  
Thomas W. Allen ◽  
...  

Abstract Information on performance of sequential treatments of quizalofop-P-ethyl with florpyrauxifen-benzyl on rice is lacking. Field studies were conducted in 2017 and 2018 in Stoneville, MS, to evaluate sequential timings of quizalofop-P-ethyl with florpyrauxifen-benzyl included in preflood treatments of rice. Quizalofop-P-ethyl treatments were no quizalofop-P-ethyl; sequential applications of quizalofop-P-ethyl at 120 g ha−1 followed by (fb) 120 g ai ha−1 applied to rice in the 2- to 3-leaf (EPOST) fb the 4-leaf to 1-tiller (LPOST) growth stages or LPOST fb 10 d after flooding (PTFLD); quizalofop-P-ethyl at 100 g ha−1 fb 139 g ha−1 EPOST fb LPOST or LPOST fb PTFLD; quizalofop-P-ethyl at 139 g ha−1 fb 100 g ha−1 EPOST fb LPOST and LPOST fb PTFLD; and quizalofop-P-ethyl at 85 g ha−1 fb 77 g ha−1 fb 77 g ha−1 EPOST fb LPOST fb PTFLD. Quizalofop-P-ethyl was applied alone and in mixture with florpyrauxifen-benzyl at 29 g ai ha−1 LPOST. Visible rice injury 14 d after PTFLD (DA-PTFLD) was no more than 3%. Visible control of volunteer rice (‘CL151’ and ‘Rex’) 7 DA-PTFLD was similar and at least 95% for each quizalofop-P-ethyl treatment. Barnyardgrass control with quizalofop-P-ethyl at 120 fb 120 g ha−1 LPOST fb PTFLD was greater (88%) in mixture with florpyrauxifen-benzyl. The addition of florpyrauxifen-benzyl to quizalofop-P-ethyl increased rough rice yield when quizalofop-P-ethyl was applied at 100 g ha−1 fb 139 g ha−1 EPOST fb LPOST. Sequential applications of quizalofop-P-ethyl at 120 g ha−1 fb 120 g ha−1 EPOST fb LPOST, 100 g ha−1 fb 139 g ha−1 EPOST fb LPOST, or 139 g ha−1 fb 100 g ha−1 EPOST fb LPOST controlled grass weed species. The addition of florpyrauxifen-benzyl was not beneficial for grass weed control. However, because quizalofop-P-ethyl does not control broadleaf weeds, florpyrauxifen-benzyl could provide broad-spectrum weed control in acetyl coenzyme A carboxylase–resistant rice.


2021 ◽  
pp. 1-26
Author(s):  
Sandra R. Ethridge ◽  
Angela Post ◽  
Pratap Devkota ◽  
Michael J. Mulvaney ◽  
Ramon G. Leon

Abstract Field experiments were conducted from 2017 to 2019 to determine the tolerance of carinata to several preemergence and postemergence herbicides. Preliminary screenings identified herbicides which caused large variation on carinata injury, indicating the potential for selectivity. Dose-response field studies were conducted to quantify the tolerance of carinata to select herbicides. Diuron applied preemergence at rates of 280 g ai ha−1 or above reduced carinata population density 54% to 84% compared to the nontreated control. In certain locations, clomazone applied preemergence caused minor injury with an acceptable level of carinata tolerance and only doses above 105 g ai ha−1 caused yield reductions. Napropamide doses of 2,856 g ai ha−1 or higher applied preemergence caused at least 25% injury to carinata; however, the damage was not severe enough to reduce yields. Simazine applied postemergence at rates above 1,594 g ai ha−1 caused 50% or more injury, resulting in yield losses ranging from 0 to 95% depending on location. Clopyralid applied postemergence at 2,512 g ai ha−1 caused 25% injury with relative yield reductions which varied across locations. The present study identified clomazone and napropamide applied preemergence, and clopyralid applied postemergence as potential herbicides for weed control in carinata. In contrast, diuron, simazine, metribuzin, imazethapyr, and chlorimuron caused high levels of carinata mortality and can be used to control volunteer carinata plants in rotational crops.


Weed Science ◽  
1997 ◽  
Vol 45 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Alvin J. Bussan ◽  
Orvin C. Burnside ◽  
James H. Orf ◽  
Eric A. Ristau ◽  
Klaus J. Puettmann

In the first of 2 field studies, weed biomass and soybean seed yield were used to evaluate 16 soybean genotypes for competitive ability against 12 weed species at Rosemount, MN, in 1992 and 1993. The yield and ranking of soybean genotypes often varied with the weed species. Grass weed species reduced yields the most, and small-seeded broadleaf weeds reduced yields the least across years. ‘Parker’ was highly competitive, as it suppressed weed biomass and produced high soybean yield. ‘Kato,’ ‘Kasota,’ ‘Dawson,’ and ‘Glenwood’ minimized weed biomass and maintained soybean yield while in competition with grass weeds but yielded poorly relative to other soybean genotypes in weed-free conditions. ‘Lambert’ produced high soybean yield in weed-free conditions, but yield dropped markedly when in competition with grass weeds. ‘Grande,’ ‘Heifeng 25,’ and ‘Norman’ soybeans were poor competitive genotypes in weedy situations and low yielding in weed-free conditions. A 2nd field study conducted at Rosemount and St. Paul, MN, during 1993 evaluated 16 soybean genotypes under 4 levels and durations of weed pressure for weed competitiveness. Parker, ‘Sturdy,’ and M89-794 were most competitive in suppressing weed biomass and producing high yields. Lambert yielded fairly well but allowed high weed biomass. M89-1743, M89-1006, ‘Archer,’ and ‘Ozzie’ yielded poorly and did not sup press weed biomass production. No relationship was found between weed competitiveness and soybean canopy area, height, and volume measured 30–45 d after planting (DAP).


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 483a-483
Author(s):  
Roy N. Keys ◽  
Dennis T. Ray ◽  
David A. Dierig

Guayule (Parthenium argentatum Gray, Asteraceae) is a latex-producing perennial desert shrub that is potentially of economic importance as an industrial crop for the desert Southwest. It is known to possess complex reproductive modes. Diploids are predominantly sexual and self-incompatible, while polyploids show a range of apomictic potential and self-compatibility. This paper describes the development of a relatively rapid and simple technique for characterizing reproductive modes of breeding lines of P. argentatum. Initial field experiments were based on an auxin test used successfully to characterize reproductive mode in the Poaceae. The application of 2,4-dichlorophenoxyacetic acid inhibited embryo formation in P. argentatum, but this was not the case with other auxins tested. Results of field experiments were ambiguous because: 1) the floral structure of P. argentatum is such that auxins might not have penetrated to the ovules, and 2) there was potential self-fertilization by pollen released within isolation bags. Therefore, in vitro culture of flower heads was tested because it provided much better control of environmental conditions, growth regulator application, and pollen release. Auxin alone, or in combination with gibberellic acid or kinetin, inhibited parthenogenesis in vitro. Embryo production did not vary using two substantially different nutrient media. In vitro flower head culture using a (Nitsch and Nitsch) liquid nutrient medium without growth regulators, enabled characterization of the reproductive mode of seven breeding lines, ranging from predominantly sexual to predominantly apomictic. The results of this technique were substantiated using RAPD analyzes of progeny arrays from controlled crosses.


2020 ◽  
pp. 1-22
Author(s):  
Michael J. Walsh ◽  
Annie E. Rayner ◽  
Annie Rutledge ◽  
John C. Broster

Abstract Chaff lining and chaff tramlining are harvest weed seed control (HWSC) systems that involve the concentration of weed seed containing chaff material into narrow (20 to 30 cm) rows between or on the harvester wheel tracks during harvest. These lines of chaff are left intact in the fields through subsequent cropping seasons in the assumption that the chaff environment is unfavourable for weed seed survival. The chaff row environment effect on weed seed survival was examined in field studies, while chaff response studies determined the influence of increasing amounts of chaff on weed seedling emergence. The objectives of these studies were to determine 1) the influence of chaff lines on the summer-autumn seed survival of selected weed species; and 2) the influence of chaff type and amount on rigid ryegrass seedling emergence. There was frequently no difference (P>0.05) in survival of seed of four weed species (rigid ryegrass, wild oat, annual sowthistle and turnip weed) when these seed were placed beneath or beside chaff lines. There was one instance where wild oat seed survival was increased (P<0.05) when seed were placed beneath compared to beside a chaff line. The pot studies determined that increasing amounts of chaff consistently resulted in decreasing numbers of rigid ryegrass seedlings emerging through chaff material. The suppression of emergence broadly followed a linear relationship where there was approximately a 2.0% reduction in emergence with every 1.0 t ha-1 increase in chaff material. This relationship was consistent across wheat, barley, canola and lupin chaff types, indicating that the physical presence of the chaff was more important than chaff type. These studies indicated that chaff lines may not affect the over summer-autumn survival of the contained weed seeds but the subsequent emergence of weed seedlings will be restricted by high amounts of chaff (>40 t ha-1).


1996 ◽  
Vol 10 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Chae Soon Kwon ◽  
Donald Penner

Greenhouse studies showed that the mixed function oxidase inhibitor, piperonyl butoxide (PBO), tank-mixed with the sulfonylurea herbicides, nicosulfuron, primisulfuron, and thifensulfuron, in the absence of effective adjuvants enhanced herbicide activity on both broadleaf and grass weed species. Effective adjuvants for nicosulfuron were K-3000 for common lambsquarters, Sylgard® 309 Surfactant for velvetleaf, K-2000 for barnyardgrass, and K-2000, K-3000, and Scoil® methylated seed oil for giant foxtail control. K-3000 and Sylgard 309 enhanced velvetleaf control with primisulfuron and thifensulfuron. The 28% urea and ammonium nitrate (UAN) was more effective as an adjuvant with thifensulfuron for velvetleaf than for common lambsquarters control. The enhancement of sulfonylurea herbicide activity with PBO was most apparent when other adjuvants were least effective.


2003 ◽  
Vol 75 (2) ◽  
pp. 235-248 ◽  
Author(s):  
Dilce F. Rossetti

The geological characterization of shallow subsurface Neogene deposits in northeastern Pará State using Ground Penetrating Radar (GPR) revealed normal and reverse faults, as well as folds, not yet well documented by field studies. The faults are identified mostly by steeply-dipping reflections that sharply cut the nearby reflections causing bed offsets, drags and rollovers. The folds are recognized by reflections that are highly undulating, configuring broad concave and convex-up features that are up to 50 m wide and 80 to 90 ns deep. These deformation structures are mostly developed within deposits of Miocene age, though some of the faults might continue into younger deposits as well. Although the studied GPR sections show several diffractions caused by trees, differential degrees of moisture, and underground artifacts, the structures recorded here can not be explained by any of these ''noises''. The detailed analysis of the GPR sections reveals that they are attributed to bed distortion caused by brittle deformation and folding. The record of faults and folds are not widespread in the Neogene deposits of the Bragantina area. These GPR data are in agreement with structural models, which have proposed a complex evolution including strike-slip motion for this area from the Miocene to present.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Alexandra M. Knight ◽  
Wesley J. Everman ◽  
David L. Jordan ◽  
Ronnie W. Heiniger ◽  
T. Jot Smyth

Adequate fertility combined with effective weed management is important in maximizing corn (Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth (Amaranthus palmeri S. Wats.) and large crabgrass (Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield.


Sign in / Sign up

Export Citation Format

Share Document