Designing optimal heat transfer experiments - A case study

2002 ◽  
Author(s):  
Ashley F. Emery ◽  
L. van Belle
Keyword(s):  
2021 ◽  
Vol 1845 (1) ◽  
pp. 012081
Author(s):  
Y Baskoro ◽  
I Jaya ◽  
A Glowacz ◽  
M Sulowicz ◽  
W Caesarendra

2013 ◽  
Vol 59 (4) ◽  
pp. 483-497 ◽  
Author(s):  
D. Prakash ◽  
P. Ravikumar

Abstract In this paper, transient analysis on heat transfer across the residential building roof having various materials like wood wool, phase change material and weathering tile is performed by numerical simulation technique. 2-dimensional roof model is created, checked for grid independency and validated with the experimental results. Three different roof structures are included in this study namely roof with (i). Concrete and weathering tile, (ii). Concrete, phase change material and weathering tile and (iii). Concrete, phase change material, wood wool and weathering tile. Roof type 3 restricts 13% of heat entering the room in comparison with roof having only concrete and weathering tile. Also the effect of various roof layers’ thickness in the roof type 3 is investigated and identified that the wood wool plays the major role in arresting the entry of heat in to the room. The average reduction of heat is about 10 % for an increase of a unit thickness of wood wool layer.


2013 ◽  
Vol 378 ◽  
pp. 459-465
Author(s):  
Ya Guo Lu ◽  
Peng Fei Zhu

A calculate method based on ε-NTU model for heat transfer characteristics of shell-tube fuel-cooled heat exchanger of aero-engine lubrication system was built. The heat convection coefficient was obtained by a dimensionless curve (Re~StPr2/3), which was detailed introduced as well. A case study was executed at last. The absolute error of the outlet lubrication of the tube side and the shell side between the value of calculation and experiment was less than ±10°C, and the relative error was less than 6.5%. The absolute error of the heat transferred between calculation and experiment was less than ±0.9kW, and the relative error was less than 7.4%. It indicates that the mothod is available for the investigation of heat transfer characteristics of shell-tube fuel-cooled heat exchanger.


2021 ◽  
Author(s):  
Jorge Rodriguez ◽  
Susana Gómez ◽  
Ngoc Tran Dinh ◽  
Giovanni Ortuño ◽  
Narendra Borole

Abstract The paper presents the application of a holistic approach to corrosion prediction that overcomes classical pitfalls in corrosion testing and modelling at high pressure, high temperature and high CO2 conditions. Thermodynamic modelling of field and lab conditions allows for more accurate predictions by a novel CO2/H2S general corrosion model validated by laboratory tests. In the proposed workflow, autoclave tests at high pressure and temperature are designed after modeling corrosion in a rigorous thermodynamic framework including fluid-dynamic modelling; the modeled steps include preparation, gas loading and heating of fluid samples at high CO2 concentration, and high flow velocities. An autoclave setup is proposed and validated to simultaneously test different conditions. Corrosion rates are extrapolated to compute service life of the materials and guide material selection. The results from the model and tests extend the application of selected stainless steel grade beyond the threshold conditions calculated by simplistic models and guidelines. Consideration of fugacities and true aqueous compositions allows for accurate thermodynamic representation of field conditions. Computation by rigorous fluid dynamics of shear stress, multiphase flow and heat transfer effects inside completion geometry lead to a proper interpretation of corrosion mechanisms and models to apply. In the case study used to showcase the workflow, conventional stainless steel is validated for most of the tubing. It is observed that some sections of the system in static condition are not exposed to liquid water, allowing for safe use of carbon steel, while as for other critical parts, more noble materials are deemed necessary. Harsh environments pose a challenge to the application of conventional steel materials. The workflow applied to the case study allows accurate representation and application of materials in its application limit region, allowing for safe use of carbon steel or less noble stainless steels in those areas of the completion where corrosion is limited by multiphase fluid-dynamics, heat transfer or the both. The approximation is validated for real case study under high CO2 content, and is considered also valid in the transportation of higher amounts of CO2, for example, in CCUS activities.


2021 ◽  
Vol 13 (38) ◽  
pp. 46055-46064
Author(s):  
Lenan Zhang ◽  
Yang Zhong ◽  
Xin Qian ◽  
Qichen Song ◽  
Jiawei Zhou ◽  
...  

2020 ◽  
Vol 82 (3) ◽  
Author(s):  
Muji Setiyo ◽  
Budi Waluyo ◽  
Nurkholis Hamidi

The ½ cycle refrigeration system on LPG fueled vehicles has a significant cooling effect. However, the cooling is very dependent on the heat exchange process in the evaporator. Therefore, this paper analyses the deviation of the actual cooling curve from the ideal scenario carried out on a laboratory scale. The analytical method used is the calculation of the effectiveness of the evaporator, which compares the actual to the potential heat transfer capacity. The LPG flow rate was varied from 1-6 g/s, while the evaporation pressure ranged between 0.05, 0.10, and 0.15 MPa, which applied to compact type evaporators with dimensions of 262 ´ 200 mm, with a thickness of 65 mm. The research results confirm that the higher the LPG mass flow rate, the lower the heat transfer effectiveness. At the higher LPG mass flow rate, heat transfer occurs less optimally,  due to incomplete evaporation of LPG in the evaporator.


10.2514/3.495 ◽  
1993 ◽  
Vol 7 (4) ◽  
pp. 754-757 ◽  
Author(s):  
Walid Chakroun ◽  
Robert P. Taylor ◽  
W. G. Steele ◽  
Hugh W. Coleman

Sign in / Sign up

Export Citation Format

Share Document