Quasi-Stationary Plasma Accelerators of a New Generation and Their Potentialities in Modification of Materials Surface Properties

Author(s):  
Valiantsin M. Astashynski ◽  
Oleg G. Penyazkov
Nukleonika ◽  
2016 ◽  
Vol 61 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Irina V. Litovko ◽  
Alexy A. Goncharov ◽  
Andrew N. Dobrovolskiy ◽  
Lily V. Naiko ◽  
Irina V. Naiko

Abstract The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.


2004 ◽  
Vol 180-181 ◽  
pp. 392-395 ◽  
Author(s):  
V.M. Astashynski ◽  
S.I. Ananin ◽  
V.V. Askerko ◽  
E.A. Kostyukevich ◽  
A.M. Kuzmitski ◽  
...  

Cellulose ◽  
2017 ◽  
Vol 25 (1) ◽  
pp. 683-695 ◽  
Author(s):  
Quim Tarrés ◽  
Helena Oliver-Ortega ◽  
Paulo J. Ferreira ◽  
M. Àngels Pèlach ◽  
Pere Mutjé ◽  
...  

2020 ◽  
Author(s):  
Natarajan Jeyaprakash ◽  
Che-Hua Yang ◽  
Durairaj Raj Kumar

The metallic materials such as steel, iron, titanium and nickel alloys etc., are extensively used in the automobile, marine, biomedical, aerospace, chemical industry and power generation sector. However, the poor surface properties restricted their wide usage in many applications. Therefore, the surface properties need to be enhanced through novel treatments without affecting the bulk. In recent years, laser surface modification attracts more due to their inherent properties. The laser based surface altering process is appropriate to modify the metallic surfaces in terms of their flexibility, simple operation and process economy. Laser surface modification includes; surface hardening, melting, alloying, cladding and texturing. Thus, from a process engineering, metallurgical reasons and tribologist view point, the laser surface modification process can be recognized as an important topic.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 264 ◽  
Author(s):  
Harbhajan Ahirwar ◽  
Yubin Zhou ◽  
Chinmaya Mahapatra ◽  
Seeram Ramakrishna ◽  
Prasoon Kumar ◽  
...  

Significant research and development in the field of biomedical implants has evoked the scope to treat a broad range of orthopedic ailments that include fracture fixation, total bone replacement, joint arthrodesis, dental screws, and others. Importantly, the success of a bioimplant depends not only upon its bulk properties, but also on its surface properties that influence its interaction with the host tissue. Various approaches of surface modification such as coating of nanomaterial have been employed to enhance antibacterial activities of a bioimplant. The modified surface facilitates directed modulation of the host cellular behavior and grafting of cell-binding peptides, extracellular matrix (ECM) proteins, and growth factors to further improve host acceptance of a bioimplant. These strategies showed promising results in orthopedics, e.g., improved bone repair and regeneration. However, the choice of materials, especially considering their degradation behavior and surface properties, plays a key role in long-term reliability and performance of bioimplants. Metallic biomaterials have evolved largely in terms of their bulk and surface properties including nano-structuring with nanomaterials to meet the requirements of new generation orthopedic bioimplants. In this review, we have discussed metals and metal alloys commonly used for manufacturing different orthopedic bioimplants and the biotic as well as abiotic factors affecting the failure and degradation of those bioimplants. The review also highlights the currently available nanomaterial-based surface modification technologies to augment the function and performance of these metallic bioimplants in a clinical setting.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 402 ◽  
Author(s):  
İbrahim Aydın ◽  
Ali İhsan Bahçepınar ◽  
Mustafa Kırman ◽  
Mustafa Ali Çipiloğlu

Ti and its alloys, which are commonly used in biomedical applications, are often preferred due to their proximity to the mechanical properties of bone. In order to increase the biocompatibility and bioactivities of these materials, biomaterials based on ceramic are used in coating operations. In this study, by using an electrophoretic deposition method, instead of on the Ti6Al4V alloy which is commonly used in the literature, a hydroxyapatite (HA) coating operation was applied on the surface of the Ti6Al7Nb alloy, and the surface properties of the coatings were examined. Ti6Al7Nb is a new-generation implant on which there have not been many studies. The voltage values which were used in the coating operation were 50, 100, 150 and 200 V, and the time parameter was stabilized at 1 min. In our method, when preparing the solution, HA, ethanol, and polyvinyl alcohol (PVA) were used. At the end of the study, by using an electron microscope (SEM) the microstructures of the coatings were examined; elemental analyses (EDS) of the coating surfaces were performed; and by using an X-radiation diffraction (XRD) method, the phases which the coatings contained and the concentration of these phases were determined, and the coating thickness, roughness, and hardness values were also determined. Also, by conducting a Scratch test, the strength of the surface combination was examined. At the end of the study, in each parameter, a successful HA coating was seen. By comparing parameters with each other, the ideal voltage value in this coating was determined. It was determined that the most suitable coating was obtained at 100 V voltage and 1 min deposition time.


2002 ◽  
Vol 28 (10) ◽  
pp. 821-823 ◽  
Author(s):  
A. I. Bugrova ◽  
A. S. Lipatov ◽  
A. I. Morozov ◽  
D. V. Churbanov

2015 ◽  
Vol 60 (3) ◽  
pp. 2221-2234 ◽  
Author(s):  
J. Marczak

AbstractThis paper presents detailed discussion of selected examples of laser technologies for the modification of solid surfaces, including topographic and microstructural changes as well as both these alterations simultaneously. Laser surface micromachining has just entered the new generation of technologies that are used in surface engineering. It will be shown on the examples of applications in bioengineering, on the base of the author’s own research, in modification of materials such as titanium and its alloys, diamond-like layers (DLC) deposited on silicon and polymer substrates.


Author(s):  
D.C. Hixson ◽  
J.C. Chan ◽  
J.M. Bowen ◽  
E.F. Walborg

Several years ago Karasaki (1) reported the production of type C virus particles by Novikoff ascites hepatocarcinoma cells. More recently, Weinstein (2) has reported the presence of type C virus particles in cell cultures derived from transplantable and primary hepatocellular carcinomas. To date, the biological function of these virus and their significance in chemically induced hepatocarcinogenesis are unknown. The present studies were initiated to determine a possible role for type C virus particles in chemically induced hepatocarcinogenesis. This communication describes results of studies on the biological and surface properties of type C virus associated with Novikoff hepatocarcinoma cells.Ecotropic and xenotropic murine leukemia virus (MuLV) activity in ascitic fluid of Novikoff tumor-bearing rats was assayed in murine sarcoma virus transformed S+L- mouse cells and S+L- mink cells, respectively. The presence of sarcoma virus activity was assayed in non-virus-producing normal rat kidney (NRK) cells. Ferritin conjugates of concanavalin A (Fer-Con wheat germ agglutinin (Fer-WGA), and Ricinus communis agglutinins I and II (Fer-RCAI and Fer-RCAII) were used to probe the structure and topography of saccharide determinants present on the viral envelope.


Sign in / Sign up

Export Citation Format

Share Document