scholarly journals Coupling between weather radar rainfall data and a distributed hydrological model for real-time flood forecasting / Couplage de données pluviométriques issues de radars météorologiques et d’un modèle hydrologique distribué pour la prévision de crue en temps réel

2004 ◽  
Vol 49 (6) ◽  
Author(s):  
Li Zhijia ◽  
Ge Wenzhong ◽  
Liu Jintao ◽  
Zhao Kun
10.29007/74bp ◽  
2018 ◽  
Author(s):  
Mamoru Miyamoto ◽  
Kazuhiro Matsumoto

Recent advancements in precipitation observation technology make it possible to precisely describe the intensity and temporal-spatial distribution of heavy rainfall, which can cause severe floods and inundations. Such technologies have also increased the accuracy of flood forecasting. However, error factors in flood forecasting remain to be solved, originating in not only input data but also model structure and calibration. Thus, this study focused on convergence results of errors in parameter optimization of the PWRI Distributed Hydrological Model and the reproducibility of river discharge. The reliability of ground-gauge and C-band-radar rainfall is compared in terms of flood forecasting under the condition of the minimum error due to calibration. Although the convergence results showed that C-band radar rainfall was superior to ground gauge rainfall, both were equally effective in reproducing river discharge with a high NSE of 0.9 at a station with error assessment. On the other hand, the reproducibility of river discharge with C-band radar data was highly superior to that with ground gauge data at a station without error assessment. This indicates that grid-based high resolution rainfall data is necessary for basin-wide flood forecasting.


Author(s):  
Dayal Wijayarathne ◽  
Paulin Coulibaly ◽  
Sudesh Boodoo ◽  
David Sills

AbstractFlood forecasting is essential to minimize the impacts and costs of floods, especially in urbanized watersheds. Radar rainfall estimates are becoming increasingly popular in flood forecasting because they provide the much-needed real-time spatially distributed precipitation information. The current study evaluates the use of radar Quantitative Precipitation Estimates (QPEs) in hydrological model calibration for streamflow simulation and flood mapping in an urban setting. Firstly, S-band and C-band radar QPEs were integrated into event-based hydrological models to improve the calibration of model parameters. Then, rain gauge and radar precipitation estimates’ performances were compared for hydrological modeling in an urban watershed to assess radar QPE's effects on streamflow simulation accuracy. Finally, flood extent maps were produced using coupled hydrological-hydraulic models integrated within the Hydrologic Engineering Center- Real-Time Simulation (HEC-RTS) framework. It is shown that the bias correction of radar QPEs can enhance the hydrological model calibration. The radar-gauge merging obtained a KGE, MPFC, NSE, and VE improvement of about + 0.42, + 0.12, + 0.78, and − 0.23, respectively for S-band and + 0.64, + 0.36, + 1.12, and − 0.34, respectively for C-band radar QPEs. Merged radar QPEs are also helpful in running hydrological models calibrated using gauge data. The HEC-RTS framework can be used to produce flood forecast maps using the bias-corrected radar QPEs. Therefore, radar rainfall estimates could be efficiently used to forecast floods in urbanized areas for effective flood management and mitigation. Canadian flood forecasting systems could be efficiently updated by integrating bias-corrected radar QPEs to simulate streamflow and produce flood inundation maps.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Mingdong Sun ◽  
Gwangseob Kim

A spatial distributed hydrological forecasting system was developed to promote the analysis of river flow dynamic state in a large basin. The research presented the real-time analysis and forecasting of multisite river flow in the Nakdong River Basin using a distributed hydrological model with radar rainfall forecast data. A real-time calibration algorithm of hydrological distributed model was proposed to investigate the particular relationship between the water storage and basin discharge. Demonstrate the approach of simulating multisite river flow using a distributed hydrological model couple with real-time calibration and forecasting of multisite river flow with radar rainfall forecasts data. The hydrographs and results exhibit that calibrated flow simulations are very approximate to the flow observation at all sites and the accuracy of forecasting flow is gradually decreased with lead times extending from 1 hr to 3 hrs. The flow forecasts are lower than the flow observation which is likely caused by the low estimation of radar rainfall forecasts. The research has well demonstrated that the distributed hydrological model is readily applicable for multisite real-time river flow analysis and forecasting in a large basin.


2010 ◽  
Vol 7 (5) ◽  
pp. 7995-8043 ◽  
Author(s):  
A. Atencia ◽  
M. C. Llasat ◽  
L. Garrote ◽  
L. Mediero

Abstract. The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.


2008 ◽  
Vol 8 (1) ◽  
pp. 161-173 ◽  
Author(s):  
D. Rabuffetti ◽  
G. Ravazzani ◽  
C. Corbari ◽  
M. Mancini

Abstract. In recent years, the interest in the prediction and prevention of natural hazards related to hydrometeorological events has grown due to the increased frequency of extreme rainstorms. Several research projects have been developed to test hydrometeorological models for real-time flood forecasting. However, flood forecasting systems are still not widespread in operational context. Real-world examples are mainly dedicated to the use of flood routing model, best suited for large river basins. For small basins, it is necessary to take advantage of the lag time between the onset of a rainstorm and the beginning of the hydrograph rise, with the use of rainfall-runoff transformation models. Nevertheless, when the lag time is very short, a rainfall predictor is required, as a result, meteorological models are often coupled with hydrological simulation. While this chaining allows floods to be forecasted on small catchments with response times ranging from 6 to 12 h it, however, causes new problems for the reliability of Quantitative Precipitation Forecasts (QPF) and also creates additional accuracy problems for space and time scales. The aim of this work is to evaluate the degree to which uncertain QPF affects the reliability of the whole hydro-meteorological alert system for small catchments. For this purpose, a distributed hydrological model (FEST-WB) was developed and analysed in operational setting experiments, i.e. the hydrological model was forced with rain observation until the time of forecast and with the QPF for the successive period, as is usual in real-time procedures. Analysis focuses on the AMPHORE case studies in Piemonte in November 2002.


2012 ◽  
Vol 16 (11) ◽  
pp. 4247-4264 ◽  
Author(s):  
E. Harader ◽  
V. Borrell-Estupina ◽  
S. Ricci ◽  
M. Coustau ◽  
O. Thual ◽  
...  

Abstract. The present study explores the application of a data assimilation (DA) procedure to correct the radar rainfall inputs of an event-based, distributed, parsimonious hydrological model. An extended Kalman filter algorithm was built on top of a rainfall-runoff model in order to assimilate discharge observations at the catchment outlet. This work focuses primarily on the uncertainty in the rainfall data and considers this as the principal source of error in the simulated discharges, neglecting simplifications in the hydrological model structure and poor knowledge of catchment physics. The study site is the 114 km2 Lez catchment near Montpellier, France. This catchment is subject to heavy orographic rainfall and characterised by a karstic geology, leading to flash flooding events. The hydrological model uses a derived version of the SCS method, combined with a Lag and Route transfer function. Because the radar rainfall input to the model depends on geographical features and cloud structures, it is particularly uncertain and results in significant errors in the simulated discharges. This study seeks to demonstrate that a simple DA algorithm is capable of rendering radar rainfall suitable for hydrological forecasting. To test this hypothesis, the DA analysis was applied to estimate a constant hyetograph correction to each of 19 flood events. The analysis was carried in two different modes: by assimilating observations at all available time steps, referred to here as reanalysis mode, and by using only observations up to 3 h before the flood peak to mimic an operational environment, referred to as pseudo-forecast mode. In reanalysis mode, the resulting correction of the radar rainfall data was then compared to the mean field bias (MFB), a corrective coefficient determined using rain gauge measurements. It was shown that the radar rainfall corrected using DA leads to improved discharge simulations and Nash-Sutcliffe efficiency criteria compared to the MFB correction. In pseudo-forecast mode, the reduction of the uncertainty in the rainfall data leads to a reduction of the error in the simulated discharge, but uncertainty from the model parameterisation diminishes data assimilation efficiency. While the DA algorithm used is this study is effective in correcting uncertain radar rainfall, model uncertainty remains an important challenge for flood forecasting within the Lez catchment.


2019 ◽  
Author(s):  
Maxime Jay-Allemand ◽  
Pierre Javelle ◽  
Igor Gejadze ◽  
Patrick Arnaud ◽  
Pierre-Olivier Malaterre ◽  
...  

Abstract. Flash flood alerts in metropolitan France are provided by SCHAPI (Service Central Hydrométéorologique et d’Appui à la Prévision des Inondations) through the Vigicrues Flash service, which is designed to work in ungauged catchments. The AIGA method implemented in Vigicrues Flash is designed for flood forecasting on small- and medium-scale watersheds. It is based on a distributed hydrological model accounting for spatial variability of the rainfall and the catchment properties, based on the radar rainfall observation inputs. Calibration of distributed parameters describing these properties with high resolution is difficult, both technically (in terms of the estimation method), and because of the identifiability issues. Indeed, the number of parameters to be calibrated is much greater than the number of spatial locations where the discharge observations are usually available. However, the flood propagation is a dynamic process, so observations have also a temporal dimension. This must be larger enough to comprise a representative set of events. In order to fully benefit from using the AIGA method, we consider its hydrological model (GRD) in combination with the variational estimation (data assimilation) method. In this method, the optimal set of parameters is found by minimizing the objective function which includes the misfit between the observed and predicted values and some additional constraints. The minimization process requires the gradient of the cost function with respect to all control parameters, which is efficiently computed using the adjoint model. The variational estimation method is scalable, fast converging, and offers a convenient framework for introducing additional constraints relevant to hydrology. It can be used both for calibrating the parameters and estimating the initial state of the hydrological system for short range forecasting (in a manner used in weather forecasting). The study area is the Gardon d’Anduze watershed where four gauging stations are available. In numerical experiments, the benefits of using the distributed against the uniform calibration are analysed in terms of the model predictive performance. Distributed calibration shows encouraging results with better model prediction at gauged and ungauged locations.


Sign in / Sign up

Export Citation Format

Share Document