scholarly journals Effect of radar rainfall time resolution on the predictive capability of a distributed hydrologic model

2010 ◽  
Vol 7 (5) ◽  
pp. 7995-8043 ◽  
Author(s):  
A. Atencia ◽  
M. C. Llasat ◽  
L. Garrote ◽  
L. Mediero

Abstract. The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.

10.29007/74bp ◽  
2018 ◽  
Author(s):  
Mamoru Miyamoto ◽  
Kazuhiro Matsumoto

Recent advancements in precipitation observation technology make it possible to precisely describe the intensity and temporal-spatial distribution of heavy rainfall, which can cause severe floods and inundations. Such technologies have also increased the accuracy of flood forecasting. However, error factors in flood forecasting remain to be solved, originating in not only input data but also model structure and calibration. Thus, this study focused on convergence results of errors in parameter optimization of the PWRI Distributed Hydrological Model and the reproducibility of river discharge. The reliability of ground-gauge and C-band-radar rainfall is compared in terms of flood forecasting under the condition of the minimum error due to calibration. Although the convergence results showed that C-band radar rainfall was superior to ground gauge rainfall, both were equally effective in reproducing river discharge with a high NSE of 0.9 at a station with error assessment. On the other hand, the reproducibility of river discharge with C-band radar data was highly superior to that with ground gauge data at a station without error assessment. This indicates that grid-based high resolution rainfall data is necessary for basin-wide flood forecasting.


2019 ◽  
Author(s):  
Maxime Jay-Allemand ◽  
Pierre Javelle ◽  
Igor Gejadze ◽  
Patrick Arnaud ◽  
Pierre-Olivier Malaterre ◽  
...  

Abstract. Flash flood alerts in metropolitan France are provided by SCHAPI (Service Central Hydrométéorologique et d’Appui à la Prévision des Inondations) through the Vigicrues Flash service, which is designed to work in ungauged catchments. The AIGA method implemented in Vigicrues Flash is designed for flood forecasting on small- and medium-scale watersheds. It is based on a distributed hydrological model accounting for spatial variability of the rainfall and the catchment properties, based on the radar rainfall observation inputs. Calibration of distributed parameters describing these properties with high resolution is difficult, both technically (in terms of the estimation method), and because of the identifiability issues. Indeed, the number of parameters to be calibrated is much greater than the number of spatial locations where the discharge observations are usually available. However, the flood propagation is a dynamic process, so observations have also a temporal dimension. This must be larger enough to comprise a representative set of events. In order to fully benefit from using the AIGA method, we consider its hydrological model (GRD) in combination with the variational estimation (data assimilation) method. In this method, the optimal set of parameters is found by minimizing the objective function which includes the misfit between the observed and predicted values and some additional constraints. The minimization process requires the gradient of the cost function with respect to all control parameters, which is efficiently computed using the adjoint model. The variational estimation method is scalable, fast converging, and offers a convenient framework for introducing additional constraints relevant to hydrology. It can be used both for calibrating the parameters and estimating the initial state of the hydrological system for short range forecasting (in a manner used in weather forecasting). The study area is the Gardon d’Anduze watershed where four gauging stations are available. In numerical experiments, the benefits of using the distributed against the uniform calibration are analysed in terms of the model predictive performance. Distributed calibration shows encouraging results with better model prediction at gauged and ungauged locations.


2011 ◽  
Vol 12 (6) ◽  
pp. 1414-1431 ◽  
Author(s):  
David Kitzmiller ◽  
Suzanne Van Cooten ◽  
Feng Ding ◽  
Kenneth Howard ◽  
Carrie Langston ◽  
...  

Abstract This study investigates evolving methodologies for radar and merged gauge–radar quantitative precipitation estimation (QPE) to determine their influence on the flow predictions of a distributed hydrologic model. These methods include the National Mosaic and QPE algorithm package (NMQ), under development at the National Severe Storms Laboratory (NSSL), and the Multisensor Precipitation Estimator (MPE) and High-Resolution Precipitation Estimator (HPE) suites currently operational at National Weather Service (NWS) field offices. The goal of the study is to determine which combination of algorithm features offers the greatest benefit toward operational hydrologic forecasting. These features include automated radar quality control, automated Z–R selection, brightband identification, bias correction, multiple radar data compositing, and gauge–radar merging, which all differ between NMQ and MPE–HPE. To examine the spatial and temporal characteristics of the precipitation fields produced by each of the QPE methodologies, high-resolution (4 km and hourly) gridded precipitation estimates were derived by each algorithm suite for three major precipitation events between 2003 and 2006 over subcatchments within the Tar–Pamlico River basin of North Carolina. The results indicate that the NMQ radar-only algorithm suite consistently yielded closer agreement with reference rain gauge reports than the corresponding HPE radar-only estimates did. Similarly, the NMQ radar-only QPE input generally yielded hydrologic simulations that were closer to observations at multiple stream gauging points. These findings indicate that the combination of Z–R selection and freezing-level identification algorithms within NMQ, but not incorporated within MPE and HPE, would have an appreciable positive impact on hydrologic simulations. There were relatively small differences between NMQ and HPE gauge–radar estimates in terms of accuracy and impacts on hydrologic simulations, most likely due to the large influence of the input rain gauge information.


2011 ◽  
Vol 15 (12) ◽  
pp. 3809-3827 ◽  
Author(s):  
A. Atencia ◽  
L. Mediero ◽  
M. C. Llasat ◽  
L. Garrote

Abstract. The performance of a hydrologic model depends on the rainfall input data, both spatially and temporally. As the spatial distribution of rainfall exerts a great influence on both runoff volumes and peak flows, the use of a distributed hydrologic model can improve the results in the case of convective rainfall in a basin where the storm area is smaller than the basin area. The aim of this study was to perform a sensitivity analysis of the rainfall time resolution on the results of a distributed hydrologic model in a flash-flood prone basin. Within such a catchment, floods are produced by heavy rainfall events with a large convective component. A second objective of the current paper is the proposal of a methodology that improves the radar rainfall estimation at a higher spatial and temporal resolution. Composite radar data from a network of three C-band radars with 6-min temporal and 2 × 2 km2 spatial resolution were used to feed the RIBS distributed hydrological model. A modification of the Window Probability Matching Method (gauge-adjustment method) was applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation by computing new Z/R relationships for both convective and stratiform reflectivities. An advection correction technique based on the cross-correlation between two consecutive images was introduced to obtain several time resolutions from 1 min to 30 min. The RIBS hydrologic model was calibrated using a probabilistic approach based on a multiobjective methodology for each time resolution. A sensitivity analysis of rainfall time resolution was conducted to find the resolution that best represents the hydrological basin behaviour.


Author(s):  
Igor Paz ◽  
Bernard Willinger ◽  
Auguste Gires ◽  
Laurent Monier ◽  
Christophe Zobrist ◽  
...  

This paper presents a comparison between rain gauges, C-band and X-band radar data over an instrumented and regulated catchment of the Paris region, as well as their respective hydrological impacts with the help of flow observations and a semi-distributed hydrological model. Both radars confirm the high spatial variability of the rainfall down to their space resolution (respectively one kilometer and 250 m) and therefore underscore limitations of semi-distributed simulations. The use of the polarimetric capacity of the Météo-France C-band radar was limited to corrections of the horizontal reflectivity and its rainfall estimates are adjusted with the help of a rain gauge network. On the contrary, neither calibration was performed for the polarimetric X-band radar of the Ecole des Ponts ParisTech (below called ENPC X-band radar), nor any optimization of its scans. In spite of that and the non-negligible fact that the catchment was much closer to the C-band radar than to the X-band radar (20 km vs. 40 km), the latter seems to perform at least as well as the former, but with a higher scale resolution. This characteristic was best highlighted with the help of a multifractal analysis of the respective radar data, which also shows that the X-band radar was able to pick up a few extremes that were smoothed out by the C-band radar.


2005 ◽  
Vol 2 ◽  
pp. 151-155 ◽  
Author(s):  
F. Piccolo ◽  
G. B. Chirico

Abstract. Radar rainfall data are affected by several types of error. Beside the error in the measurement of the rainfall reflectivity and its transformation into rainfall intensity, random errors can be generated by the temporal spacing of the radar scans. The aim of this work is to analize the sensitivity of the estimated rainfall maps to the radar sampling interval, i.e. the time interval between two consecutive radar scans. This analysis has been performed employing data collected with a polarimetric C-band radar in Rome, Italy. The radar data consist of reflectivity maps with a sampling interval of 1min and a spatial resolution of 300m, covering an area of 1296km2. The transformation of the reflectivity maps in rainfall fields has been validated against rainfall data collected by a network of 14 raingauges distributed across the study area. Accumulated rainfall maps have been calculated for different spatial resolutions (from 300m to 2400m) and different sampling intervals (from 1min to 16min). The observed differences between the estimated rainfall maps are significant, showing that the sampling interval can be an important source of error in radar rainfall measurements.


Sign in / Sign up

Export Citation Format

Share Document