scholarly journals Cold Season Respiration Across a Low Arctic Landscape: the Influence of Vegetation Type, Snow Depth, and Interannual Climatic Variation

2012 ◽  
Vol 44 (4) ◽  
pp. 446-456 ◽  
Author(s):  
Paul Grogan
1998 ◽  
Vol 44 (148) ◽  
pp. 498-516 ◽  
Author(s):  
Glen E. Liston ◽  
Matthew Sturm

AbstractAs part of the winter environment in middle- and high-latitude regions, the interactions between wind, vegetation, topography and snowfall produce snow covers of non-uniform depth and snow water-equivalent distribution. A physically based numerical snow-transport model (SnowTran-3D) is developed and used to simulate this three-dimensional snow-depth evolution over topographically variable terrain. The mass-transport model includes processes related to vegetation snow-holding capacity, topographic modification of wind speeds, snow-cover shear strength, wind-induced surface-shear stress, snow transport resulting from saltation and suspension, snow accumulation and erosion, and sublimation of the blowing and drifting snow. The model simulates the cold-season evolution of snow-depth distribution when forced with inputs of vegetation type and topography, and atmospheric foreings of air temperature, humidity, wind speed and direction, and precipitation. Model outputs include the spatial and temporal evolution of snow depth resulting from variations in precipitation, saltation and suspension transport, and sublimation. Using 4 years of snow-depth distribution observations from the foothills north of the Brooks Range in Arctic Alaska, the model is found to simulate closely the observed snow-depth distribution patterns and the interannual variability.


1998 ◽  
Vol 44 (148) ◽  
pp. 498-516 ◽  
Author(s):  
Glen E. Liston ◽  
Matthew Sturm

AbstractAs part of the winter environment in middle- and high-latitude regions, the interactions between wind, vegetation, topography and snowfall produce snow covers of non-uniform depth and snow water-equivalent distribution. A physically based numerical snow-transport model (SnowTran-3D) is developed and used to simulate this three-dimensional snow-depth evolution over topographically variable terrain. The mass-transport model includes processes related to vegetation snow-holding capacity, topographic modification of wind speeds, snow-cover shear strength, wind-induced surface-shear stress, snow transport resulting from saltation and suspension, snow accumulation and erosion, and sublimation of the blowing and drifting snow. The model simulates the cold-season evolution of snow-depth distribution when forced with inputs of vegetation type and topography, and atmospheric foreings of air temperature, humidity, wind speed and direction, and precipitation. Model outputs include the spatial and temporal evolution of snow depth resulting from variations in precipitation, saltation and suspension transport, and sublimation. Using 4 years of snow-depth distribution observations from the foothills north of the Brooks Range in Arctic Alaska, the model is found to simulate closely the observed snow-depth distribution patterns and the interannual variability.


2014 ◽  
Vol 84 ◽  
pp. 299-307 ◽  
Author(s):  
Jeremy T. Lundholm ◽  
Brett M. Weddle ◽  
J. Scott MacIvor

2016 ◽  
Vol 48 (4) ◽  
pp. 932-944 ◽  
Author(s):  
H. C. L. O'Neil ◽  
T. D. Prowse ◽  
B. R. Bonsal ◽  
Y. B. Dibike

Much of the freshwater in western Canada originates in the Rocky Mountains as snowpack. Temperature and precipitation patterns throughout the region control the amount of snow accumulated and stored throughout the winter, and the intensity and timing of melt during the spring freshet. Therefore, changes in temperature, precipitation, snow depth, and snowmelt over western Canada are examined through comparison of output from the current and future periods of a series of regional climate models for the time periods 1971–2000 and 2041–2070. Temporal and spatial analyses of these hydroclimatic variables indicate that minimum temperature is likely to increase more than maximum temperature, particularly during the cold season, possibly contributing to earlier spring melt. Precipitation is projected to increase, particularly in the north. In the coldest months of the year snow depth is expected to increase in northern areas and decrease across the rest of study area. Snowmelt results indicate increases in mid-winter melt events and an earlier onset of the spring freshet. This study provides a summary of potential future climate using key hydroclimatic variables across western Canada with regard to the effects these changes may have on streamflow and the spring freshet, and thus water resources, throughout the study area.


Part I This flora is interpreted as representing a vegetation of meadow birch woodland influenced by local edaphic conditions of a base rich sandy alluvial environment. It includes important aquatic associations and pioneer associations on sand substrates of different moisture contents. A thermophilous component indicating July mean temperature up to 15 °C is anomalous for this general vegetation type today and suggests that the vegetation was also influenced by the factor of delayed immigration of climax species. It is believed that this is due to the floras existence during an early interstadial of the Saalian, following the refrigeration which brought the Holstein to a close. Part II No pollen was obtained, but the plant macrofossils indicate a flora typical of the alluvial environment suggested by the sedimentary context. The vegetation was treeless and was sub-Arctic or even low-Arctic, though the occurrence of Groenlandia densa is anomalous. This plant occurs, however, at other mid-Weichselian sites, to which the Brandon flora shows general similarity.


2011 ◽  
Vol 75 (5) ◽  
pp. 1756-1765 ◽  
Author(s):  
Haiyan Chu ◽  
Josh D. Neufeld ◽  
Virginia K. Walker ◽  
Paul Grogan

2021 ◽  
pp. 1-40

Abstract In this study, we compiled a high-quality, in situ observational dataset to evaluate snow depth simulations from 22 CMIP6 models across high-latitude regions of the Northern Hemisphere over the period 1955–2014. Simulated snow depths have low accuracy (RMSE = 17–36 cm) and are biased high, exceeding the observed baseline (1976–2005) on average (18 ± 16 cm) across the study area. Spatial climatological patterns based on observations are modestly reproduced by the models (NRMSDs of 0.77 ± 0.20). Observed snow depth during the cold season increased by about 2.0 cm over the study period, which is approximately 11% relative to the baseline. The models reproduce decreasing snow depth trends that contradict the observations, but they all indicate a precipitation increase during the cold season. The modeled snow depths are insensitive to precipitation but too sensitive to air temperature; these inaccurate sensitivities could explain the discrepancies between the observed and simulated snow depth trends. Based on our findings, we recommend caution when using and interpreting simulated changes in snow depth and associated impacts.


2021 ◽  
Author(s):  
Mikel Moriana Armendariz ◽  
Holly Abbandonato ◽  
Takahiro Yamaguchi ◽  
Martin A Mörsdorf ◽  
Karoline Helene Aares ◽  
...  

In the Arctic, fungal mycelial growth takes place mainly during the cold-season and beginning of growing season. Climate change induced increases of cold-season temperatures may, hence, benefit fungal growth and increase their abundance. This is of special importance for parasitic fungi, which may significantly shape Arctic vegetation composition. Here, we studied two contrasting plant parasitic fungi’s occurrences (biotrophic Exobasidium hypogenum on vascular plant Cassiope tetragona, and necrotrophic Pythium polare on moss Sanionia uncinata) in response to increased snow depth, a method primarily used to increase cold-season temperatures, after 7-13 years of snow manipulation in Adventdalen, Svalbard. We show that enhanced snow depth increased occurrences of both fungi tested here, and indicate that increased fungal infections of host plants were at least partly responsible for decreases of host occurrences. While bryophyte growth in general may be influenced by increased soil moisture and reduced competition from vascular plants, Pythium is likely enhanced by the combination of milder winter temperatures and moister environment provided by the snow. The relationships between host plants and fungal infection indicate ongoing processes involved in the dynamics of compositional adjustment to changing climate.


2022 ◽  
Vol 269 ◽  
pp. 112840
Author(s):  
Haili Li ◽  
Chang-Qing Ke ◽  
Qinghui Zhu ◽  
Mengmeng Li ◽  
Xiaoyi Shen

Sign in / Sign up

Export Citation Format

Share Document