scholarly journals Beyond peroxisome proliferator-activated receptor γ signaling: the multi-facets of the antitumor effect of thiazolidinediones

2006 ◽  
Vol 13 (2) ◽  
pp. 401-413 ◽  
Author(s):  
J-R Weng ◽  
C-Y Chen ◽  
J J Pinzone ◽  
M D Ringel ◽  
C-S Chen

Certain members of the thiazolidinedione (TZD) family of the peroxisome proliferator-activated receptor γ (PPARγ) agonists, such as troglitazone and ciglitazone, exhibit antitumor activities; however, the underlying mechanism remains inconclusive. Substantial evidence suggests that the antiproliferative effect of these TZD members in cancer cells is independent of PPARγ activation. To discern the role of PPARγ in the antitumor effects of TZDs, we have synthesized PPARγ-inactive TZD analogs which, although devoid of PPARγ activity, retain the ability to induce apoptosis with a potency equal to that of their parental TZDs in cancer cell lines with varying PPARγ expression status. Mechanistic studies from this and other laboratories have further suggested that troglitazone and ciglitazone mediate antiproliferative effects through a complexity of PPARγ-independent mechanisms. Evidence indicates that troglitazone and ciglitazone block BH3 domain-mediated interactions between the anti apoptotic Bcl-2 (B-cell leukemia/lymphoma 2) members Bcl-2/Bcl-xL and proapoptotic Bcl-2 members. Moreover, these TZDs facilitate the degradation of cyclin D1 and caspase-8-related FADD-like IL-l-converting enzyme (FLICE)-inhibitory protein through proteasome-mediated proteolysis, and down-regulate the gene expression of prostate-specific antigen gene expression by inhibiting androgen activation of the androgen response elements in the promoter region. More importantly, dissociation of the effects of TZDs on apoptosis from their original pharmacological activity (i.e. PPARγ activation) provides a molecular basis for the exploitation of these compounds to develop different types of molecularly targeted anticancer agents. These TZD-derived novel therapeutic agents, alone or in combination with other anticancer drugs, have translational relevance in fostering effective strategies for cancer treatment.

2009 ◽  
Vol 425 (1) ◽  
pp. 215-224 ◽  
Author(s):  
Victoria A. Payne ◽  
Wo-Shing Au ◽  
Christopher E. Lowe ◽  
Shaikh M. Rahman ◽  
Jacob E. Friedman ◽  
...  

The transcription factor SREBP1c (sterol-regulatory-element-binding protein 1c) is highly expressed in adipose tissue and plays a central role in several aspects of adipocyte development including the induction of PPARγ (peroxisome-proliferator-activated receptor γ), the generation of an endogenous PPARγ ligand and the expression of several genes critical for lipid biosynthesis. Despite its significance, the regulation of SREBP1c expression during adipogenesis is not well characterized. We have noted that in several models of adipogenesis, SREBP1c expression closely mimics that of known C/EBPβ (CCAAT/enhancer-binding protein β) targets. Inhibition of C/EBP activity during adipogenesis by expressing either the dominant-negative C/EBPβ LIP (liver-enriched inhibitory protein) isoform, the co-repressor ETO (eight-twenty one/MTG8) or using siRNAs (small interfering RNAs) targeting either C/EBPβ or C/EBPδ significantly impaired early SREBP1c induction. Furthermore, ChIP (chromatin immunoprecipitation) assays identified specific sequences in the SREBP1c promoter to which C/EBPβ and C/EBPδ bind in intact cells, demonstrating that these factors may directly regulate SREBP1c expression. Using cells in which C/EBPα expression is inhibited using shRNA (short hairpin RNA) and ChIP assays we show that C/EBPα replaces C/EBPβ and C/EBPδ as a regulator of SREBP1c expression in maturing adipocytes. These results provide novel insight into the induction of SREBP1c expression during adipogenesis. Moreover, the findings of the present study identify an important additional mechanism via which the C/EBP transcription factors may control a network of gene expression regulating adipogenesis, lipogenesis and insulin sensitivity.


2005 ◽  
Vol 389 (1) ◽  
pp. 47-56 ◽  
Author(s):  
M. Carmen CARMONA ◽  
Elayne HONDARES ◽  
M. Luisa RODRÍGUEZ DE LA CONCEPCIÓN ◽  
Víctor RODRÍGUEZ-SUREDA ◽  
Julia PEINADO-ONSURBE ◽  
...  

C/EBPβ (CCAAT/enhancer-binding protein β) is a transcriptional regulator of the UCP1 (uncoupling protein-1) gene, the specific marker gene of brown adipocytes that is responsible for their thermogenic capacity. To investigate the role of C/EBPβ in brown fat, we studied the C/EBPβ-null mice. When placed in the cold, C/EBPβ−/− mice did not maintain body temperature. This cold-sensitive phenotype occurred, although UCP1 and PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α) gene expression was unaltered in brown fat of C/EBPβ−/− mice. The UCP1 gene promoter was repressed by the truncated inhibitory C/EBPβ isoform LIP (liver-enriched transcriptional inhibitory protein, the truncated inhibitory C/EBPβ isoform). Since C/EBPβ-null mice lack both C/EBPβ isoforms, active LAP (liver-enriched transcriptional activatory protein, the active C/EBPβ isoform) and LIP, the absence of LIP may have a stronger effect than the absence of LAP upon UCP1 gene expression. Gene expression for UCP2 and UCP3 was not impaired in all tissues analysed. In primary brown adipocytes from C/EBPβ−/− mice, induction of gene expression by noradrenaline was preserved. In contrast, the expression of genes related to lipid storage was impaired, as was the amount of triacylglycerol mobilized after acute cold exposure in brown fat from C/EBPβ−/− mice. LPL (lipoprotein lipase) activity was also impaired in brown fat, but not in other tissues of C/EBPβ−/− mice. LPL protein levels were also diminished, but this effect was independent of changes in LPL mRNA, suggesting that C/EBPβ is involved in the post-transcriptional regulation of LPL gene expression in brown fat. In summary, defective thermoregulation owing to the lack of C/EBPβ is associated with the reduced capacity to supply fatty acids as fuels to sustain brown fat thermogenesis.


2015 ◽  
Vol 36 (6) ◽  
pp. 2466-2479 ◽  
Author(s):  
XiaoLe Xu ◽  
Mengzi He ◽  
Tingting Liu ◽  
Yi Zeng ◽  
Wei Zhang

Background/Aims: salusin-ß is considered to be a potential pro-atherosclerotic factor. Regulation and function of vascular smooth muscle cells (VSMCs) are important in the progression of atherosclerosis. Peroxisome proliferator-activated receptor gamma (PPARγ) exerts a vascular protective role beyond its metabolic effects. Salusin-ß has direct effects on VSMCs. The aim of the present study was to assess the effect of salusin-ß on PPARγ gene expression in primary cultured rat VSMCs. Methods: Western blotting analysis, real-time PCR and transient transfection approach were used to determine expression of target proteins. Specific protein knockdown was performed with siRNA transfection. Cell proliferation was determined by 5-bromo-2'-deoxyuridine incorporation. The levels of inflammation indicators interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a) were determined using enzyme-linked immunosorbent assay. Results: Salusin-ß negatively regulated PPARγ gene expression at protein, mRNA and gene promoter level in VSMCs. The inhibitory effect of salusin-ß on PPARγ gene expression contributed to salusin-ß-induced VSMCs proliferation and inflammation in vitro. IγBa-NF-γB activation, but not NF-γB p50 or p65, mediated the salusin-ß-induced inhibition of PPARγ gene expression. Salusin-ß induced nuclear translocation of histone deacetylase 3 (HDAC3). HDAC3 siRNA prevented salusin-ß-induced PPARγ reduction. Nuclear translocation of HDAC3 in response to salusin-ß was significantly reversed by an IγBa inhibitor BAY 11-7085. Furthermore, IγBa-HDAC3 complex was present in the cytosol of VSMCs but interrupted after salusin-ß treatment. Conclusion: IγBa-HDAC3 pathway may contribute to salusin-ß-induced inhibition of PPARγ gene expression in VSMCs.


2009 ◽  
Vol 284 (24) ◽  
pp. 16541-16552 ◽  
Author(s):  
Üzen Savas ◽  
Daniel E. W. Machemer ◽  
Mei-Hui Hsu ◽  
Pryce Gaynor ◽  
Jerome M. Lasker ◽  
...  

CYP4A11 transgenic mice (CYP4A11 Tg) were generated to examine in vivo regulation of the human CYP4A11 gene. Expression of CYP4A11 in mice yields liver and kidney P450 4A11 levels similar to those found in the corresponding human tissues and leads to an increased microsomal capacity for ω-hydroxylation of lauric acid. Fasted CYP4A11 Tg mice exhibit 2–3-fold increases in hepatic CYP4A11 mRNA and protein, and this response is absent in peroxisome proliferator-activated receptor α (PPARα) null mice. Dietary administration of either of the PPARα agonists, fenofibrate or clofibric acid, increases hepatic and renal CYP4A11 levels by 2–3-fold, and these responses were also abrogated in PPARα null mice. Basal liver CYP4A11 levels are reduced differentially in PPARα−/− females (>95%) and males (<50%) compared with PPARα−/+ mice. Quantitative and temporal differences in growth hormone secretion are known to alter hepatic lipid metabolism and to underlie sexually dimorphic gene expression, respectively. Continuous infusion of low levels of growth hormone reduced CYP4A11 expression by 50% in PPARα-proficient male and female transgenic mice. A larger decrease was observed for the expression of CYP4A11 in PPARα−/− CYP4A11 Tg male mice to levels similar to that of female PPARα-deficient mice. These results suggest that PPARα contributes to the maintenance of basal CYP4A11 expression and mediates CYP4A11 induction in response to fibrates or fasting. In contrast, increased exposure to growth hormone down-regulates CYP4A11 expression in liver.


Author(s):  
Jing Li ◽  
Kewei Xu ◽  
Hao Ding ◽  
Qiaozhen Xi

Abstract Aims Increasing preclinical and clinical reports have demonstrated the efficacy of gabapentin (GBP) in treating alcohol use disorder (AUD). However, the mechanism of the effects of GBP in AUD is largely unknown. Herein, we sought to investigate the effect of GBP in a rat model of AUD and explore the underlying mechanism. Methods The intermittent access to 20% ethanol in a 2-bottle choice (IA2BC) procedure was exploited to induce high voluntary ethanol consumption in rats. The rats were treated daily for 20 days with different doses of GBP, simultaneously recording ethanol/water intake. The locomotor activity and grooming behavior of rats were also tested to evaluate the potential effects of GBP on confounding motor in rats. The levels of IL-1β and TNF-α in serum and hippocampus homogenate from the rats were detected by using ELISA. The expressions of peroxisome proliferator-activated-receptor γ (PPAR-γ) and nuclear factor-κB (NF-κB) in the hippocampus were determined by immunofluorescence and western blot. Results GBP reduced alcohol consumption, whereas increased water consumption and locomotor activity of rats. GBP was also able to decrease the levels of IL-1β and TNF-α in both serum and hippocampus, in addition to the expression of NF-κB in the hippocampus. Furthermore, these effects attributed to GBP were observed to disappear in the presence of bisphenol A diglycidyl ether (BADGE), a specific inhibitor of PPAR-γ. Conclusions Our findings revealed that GBP could activate PPAR-γ to suppress the NF-κB signaling pathway, contributing to the decrease of ethanol consumption and ethanol-induced neuroimmune responses.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Michael A Burke ◽  
Stephen Chang ◽  
Danos C Christodoulou ◽  
Joshua M Gorham ◽  
Hiroko Wakimoto ◽  
...  

The complex molecular networks underpinning DCM remain poorly understood. To study distinct pathways and networks in the longitudinal development of DCM we performed RNAseq on LV tissue from mice carrying a human DCM mutation in phospholamban (PLN R9C/+ ) before phenotype onset (pre-DCM), with DCM, and during overt heart failure (HF), and also on isolated myocytes and non-myocytes from DCM hearts. PLN R9C/+ mice show progressive fibrosis (20% vs. 1% control, p=6x10 −33 ; n=3) associated with proliferation of cardiac non-myocytes (33% increase over control, p=6x10 −4 ; n=3). Consistent with this, cardiac non-myocytes have upregulated gene expression and pathways, while these are generally downregulated in myocytes. Non-myocytes were enriched in fibrosis, inflammation, and cell remodeling pathways, from pre-DCM to HF. In contrast, myocytes were enriched for metabolic pathways only with overt DCM and HF. Myocytes showed profound derangement of oxidative phosphorylation with DCM (p=2.5x10 −41 ; 44% (53/120) of pathway genes downregulated), suggesting mitochondrial dysfunction. Additionally, we detected probable inhibition of peroxisome proliferator-activated receptor (PPAR) signaling by diminished expression of pathway genes (Figure). DCM and hypertrophic remodeling was compared using RNAseq of a mouse model of HCM; similar patterns of fibrosis with myocyte metabolic dysregulation were evident despite unique differential gene expression patterns between models. DCM caused by PLN R9C/+ is associated with early non-myocyte proliferation and later myocyte metabolic derangement possibly governed by altered PPAR signaling, and is common to DCM and HCM.


Sign in / Sign up

Export Citation Format

Share Document