scholarly journals The role of JUN in the regulation of PRKCC-mediated STAR expression and steroidogenesis in mouse Leydig cells

2008 ◽  
Vol 41 (5) ◽  
pp. 329-341 ◽  
Author(s):  
Pulak R Manna ◽  
Douglas M Stocco

Activator protein 1 (JUN) transcription factors (JUN and FOS) play critical roles in a wide variety of signaling processes including those in the protein kinase C (PRKCC) pathway, a pathway that is instrumental in the expression of the steroidogenic acute regulatory (STAR) protein. In the present study, we determined the functional involvement of one of the key JUN family members, JUN, in the regulation of PRKCC-dependent STAR expression and steroidogenesis. MA-10 mouse Leydig tumor cells treated with an activator of PRKCC, phorbol 12-myristate 13-acetate (PMA), demonstrated increases in the expression of the STAR and CYP11A1 proteins and progesterone synthesis, which coincided with the expression and phosphorylation of JUN (P-JUN). PMA was also capable of enhancing the cAMP analog, (Bu)2cAMP, which stimulated JUN, STAR, P-STAR and progesterone levels. The induction of Jun mRNA expression and steroid synthesis by PMA requires de novo protein synthesis. Chromatin immunoprecipitation studies revealed the association of P-JUN with the STAR proximal promoter and that PMA specifically enhanced in vivo P-JUN–DNA interaction. Electrophoretic mobility shift assays and reporter gene analyses demonstrated that JUN binds to the JUN motif (−81/−75 bp) in the STAR promoter, and that JUN–DNA-binding activity was highly correlated with the induction of JUN by PRKCC signaling. Overexpression of JUN increased the PMA-mediated transcription of the Star gene, an event markedly decreased by TAM-67, a dominant negative mutant of JUN. Targeted silencing of endogenous JUN, by small interfering RNA, was correlated with the repression of basal- and PMA-mediated STAR expression and progesterone synthesis. These findings describe the mechanisms by which JUN influences PRKCC signaling and provide additional and novel insight into the regulation of the steroidogenic machinery in mouse Leydig cells.

2003 ◽  
Vol 374 (3) ◽  
pp. 747-753 ◽  
Author(s):  
Arnold H. van der LUIT ◽  
Marianne BUDDE ◽  
Marcel VERHEIJ ◽  
Wim J. van BLITTERSWIJK

The synthetic alkyl-lysophospholipid (ALP), Et-18-OCH3 (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine), can induce apoptosis in tumour cells. Unlike conventional chemotherapeutic drugs, ALP acts at the cell-membrane level. We have reported previously that ALP is internalized, and interferes with phosphatidylcholine (PC) biosynthesis de novo, which appeared to be essential for survival in lymphoma cells [Van der Luit, Budde, Ruurs, Verheij and Van Blitterswijk (2002) J. Biol. Chem. 277, 39541–39547]. Here, we report that, in HeLa cells, ALP accumulates in lipid rafts, and that internalization is inhibited by low temperature, monensin, disruption of lipid rafts and expression of a dominant-negative mutant of dynamin bearing a replacement of Lys44 with alanine (K44A). Thus ALP is internalized via raft- and dynamin-mediated endocytosis. Dynamin-K44A alleviated the ALP-induced inhibition of PC synthesis and rescued the cells from apoptosis induction. Additional cell rescue was attained by exogenous lysoPC, which after internalization serves as an alternative substrate for PC synthesis (through acylation). Unlike ALP, and despite the high structural similarity to ALP, lysoPC uptake did not occur via lipid rafts and did not depend on functional dynamin, indicating no involvement of endocytosis. Albumin back-extraction experiments suggested that (radiolabelled) lysoPC undergoes transbilayer movement (flipping). We conclude that ALP is internalized by endocytosis via lipid rafts to cause apoptosis, while exogenous cell-rescuing lysoPC traverses the plasma membrane outside rafts by flipping. Additionally, our data imply the importance of ether bonds in lyso-phospholipids, such as in ALP, for partitioning in lipid rafts.


1999 ◽  
Vol 19 (11) ◽  
pp. 7589-7599 ◽  
Author(s):  
Mariano Ubeda ◽  
Mario Vallejo ◽  
Joel F. Habener

ABSTRACT The transcription factor CHOP (C/EBP homologous protein 10) is a bZIP protein induced by a variety of stimuli that evoke cellular stress responses and has been shown to arrest cell growth and to promote programmed cell death. CHOP cannot form homodimers but forms stable heterodimers with the C/EBP family of activating transcription factors. Although initially characterized as a dominant negative inhibitor of C/EBPs in the activation of gene transcription, CHOP-C/EBP can activate certain target genes. Here we show that CHOP interacts with members of the immediate-early response, growth-promoting AP-1 transcription factor family, JunD, c-Jun, and c-Fos, to activate promoter elements in the somatostatin, JunD, and collagenase genes. The leucine zipper dimerization domain is required for interactions with AP-1 proteins and transactivation of transcription. Analyses by electrophoretic mobility shift assays and by an in vivo mammalian two-hybrid system for protein-protein interactions indicate that CHOP interacts with AP-1 proteins inside cells and suggest that it is recruited to the AP-1 complex by a tethering mechanism rather than by direct binding of DNA. Thus, CHOP not only is a negative or a positive regulator of C/EBP target genes but also, when tethered to AP-1 factors, can activate AP-1 target genes. These findings establish the existence of a new mechanism by which CHOP regulates gene expression when cells are exposed to cellular stress.


2000 ◽  
Vol 20 (5) ◽  
pp. 1571-1582 ◽  
Author(s):  
Shrikesh Sachdev ◽  
Sriparna Bagchi ◽  
Donna D. Zhang ◽  
Angela C. Mings ◽  
Mark Hannink

ABSTRACT The inhibitor of kappa B alpha (IκBα) protein is able to shuttle between the cytoplasm and the nucleus. We have utilized a combination of in vivo and in vitro approaches to provide mechanistic insight into nucleocytoplasmic shuttling by IκBα. IκBα contains multiple functional domains that contribute to shuttling of IκBα between the cytoplasm and the nucleus. Nuclear import of IκBα is mediated by the central ankyrin repeat domain. Similar to previously described nuclear import pathways, nuclear import of IκBα is temperature and ATP dependent and is blocked by a dominant-negative mutant of importin β. However, in contrast to classical nuclear import pathways, nuclear import of IκBα is independent of soluble cytosolic factors and is not blocked by the dominant-negative RanQ69L protein. Nuclear export of IκBα is mediated by an N-terminal nuclear export sequence. Nuclear export of IκBα requires the CRM1 nuclear export receptor and is blocked by the dominant-negative RanQ69L protein. Our results are consistent with a model in which nuclear import of IκBα is mediated through direct interactions with components of the nuclear pore complex, while nuclear export of IκBα is mediated via a CRM1-dependent pathway.


Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 3173-3183 ◽  
Author(s):  
K.L. Kroll ◽  
E. Amaya

We have developed a simple approach for large-scale transgenesis in Xenopus laevis embryos and have used this method to identify in vivo requirements for FGF signaling during gastrulation. Plasmids are introduced into decondensed sperm nuclei in vitro using restriction enzyme-mediated integration (REMI). Transplantation of these nuclei into unfertilized eggs yields hundreds of normal, diploid embryos per day which develop to advanced stages and express integrated plasmids nonmosaically. Transgenic expression of a dominant negative mutant of the FGF receptor (XFD) after the mid-blastula stage uncouples mesoderm induction, which is normal, from maintenance of mesodermal markers, which is lost during gastrulation. By contrast, embryos expressing XFD contain well-patterned nervous systems despite a putative role for FGF in neural induction.


2001 ◽  
Vol 280 (5) ◽  
pp. C1262-C1276 ◽  
Author(s):  
Carola E. Wright ◽  
P. W. Bodell ◽  
F. Haddad ◽  
A. X. Qin ◽  
K. M. Baldwin

The main goal of this study was to examine the transcriptional activity of different-length β-myosin heavy chain (β-MHC) promoters in the hypertensive rodent heart using the direct gene transfer approach. A hypertensive state was induced by abdominal aortic constriction (AbCon) sufficient to elevate mean arterial pressure by ∼45% relative to control. Results show that β-MHC promoter activity of all tested wild-type constructs, i.e., −3500, −408, −299, −215, −171, and −71 bp, was significantly increased in AbCon hearts. In the normal control hearts, expression of the −71-bp construct was comparable to that of the promoterless vector, but its induction by AbCon was comparable to that of the other constructs. Additional results, based on mutation analysis and DNA gel mobility shift assays targeting βe1, βe2, GATA, and βe3 elements, show that these previously defined cis-elements in the proximal promoter are indeed involved in maintaining basal promoter activity; however, none of these elements, either individually or collectively, appear to be major players in mediating the hypertension response of the β-MHC gene. Collectively, these results indicate that three separate regions on the β-MHC promoter are involved in the induction of the gene in response to hypertension: 1) a distal region between −408 and −3500 bp, 2) a proximal region between −299 and −215 bp, and 3) a basal region within −71 bp of the transcription start site. Future research needs to further characterize these responsive regions to more fully delineate β-MHC transcriptional regulation in response to pressure overload.


2020 ◽  
Vol 318 (1) ◽  
pp. C215-C224 ◽  
Author(s):  
Joaquin M. Muriel ◽  
Andrea O’Neill ◽  
Jaclyn P. Kerr ◽  
Emily Kleinhans-Welte ◽  
Richard M. Lovering ◽  
...  

Intermediate filaments (IFs) contribute to force transmission, cellular integrity, and signaling in skeletal muscle. We previously identified keratin 19 (Krt19) as a muscle IF protein. We now report the presence of a second type I muscle keratin, Krt18. Krt18 mRNA levels are about half those for Krt19 and only 1:1,000th those for desmin; the protein was nevertheless detectable in immunoblots. Muscle function, measured by maximal isometric force in vivo, was moderately compromised in Krt18-knockout ( Krt18-KO) or dominant-negative mutant mice ( Krt18 DN), but structure was unaltered. Exogenous Krt18, introduced by electroporation, was localized in a reticulum around the contractile apparatus in wild-type muscle and to a lesser extent in muscle lacking Krt19 or desmin or both proteins. Exogenous Krt19, which was either reticular or aggregated in controls, became reticular more frequently in Krt19-null than in Krt18-null, desmin-null, or double-null muscles. Desmin was assembled into the reticulum normally in all genotypes. Notably, all three IF proteins appeared in overlapping reticular structures. We assessed the effect of Krt18 on susceptibility to injury in vivo by electroporating siRNA into tibialis anterior (TA) muscles of control and Krt19-KO mice and testing 2 wk later. Results showed a 33% strength deficit (reduction in maximal torque after injury) compared with siRNA-treated controls. Conversely, electroporation of siRNA to Krt19 into Krt18-null TA yielded a strength deficit of 18% after injury compared with controls. Our results suggest that Krt18 plays a complementary role to Krt19 in skeletal muscle in both assembling keratin-based filaments and transducing contractile force.


2010 ◽  
Vol 207 (11) ◽  
pp. 2331-2341 ◽  
Author(s):  
John R. Grainger ◽  
Katie A. Smith ◽  
James P. Hewitson ◽  
Henry J. McSorley ◽  
Yvonne Harcus ◽  
...  

Foxp3-expressing regulatory T (T reg) cells have been implicated in parasite-driven inhibition of host immunity during chronic infection. We addressed whether parasites can directly induce T reg cells. Foxp3 expression was stimulated in naive Foxp3− T cells in mice infected with the intestinal helminth Heligmosomoides polygyrus. In vitro, parasite-secreted proteins (termed H. polygyrus excretory-secretory antigen [HES]) induced de novo Foxp3 expression in fluorescence-sorted Foxp3− splenocytes from Foxp3–green fluorescent protein reporter mice. HES-induced T reg cells suppressed both in vitro effector cell proliferation and in vivo allergic airway inflammation. HES ligated the transforming growth factor (TGF) β receptor and promoted Smad2/3 phosphorylation. Foxp3 induction by HES was lost in dominant-negative TGF-βRII cells and was abolished by the TGF-β signaling inhibitor SB431542. This inhibitor also reduced worm burdens in H. polygyrus–infected mice. HES induced IL-17 in the presence of IL-6 but did not promote Th1 or Th2 development under any conditions. Importantly, antibody to mammalian TGF-β did not recognize HES, whereas antisera that inhibited HES did not affect TGF-β. Foxp3 was also induced by secreted products of Teladorsagia circumcincta, a related nematode which is widespread in ruminant animals. We have therefore identified a novel pathway through which helminth parasites may stimulate T reg cells, which is likely to be a key part of the parasite’s immunological relationship with the host.


1999 ◽  
Vol 276 (2) ◽  
pp. G322-G330 ◽  
Author(s):  
Brian K. Dieckgraefe ◽  
Danielle M. Weems

The signaling pathways activated in response to gastrointestinal injury remain poorly understood. Previous work has implicated the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase as a mediator of wound-signal transduction and a possible regulator of epithelial restitution. Monolayer injury resulted in rapid activation of p42 and p44 ERK. Injury-induced ERK activation was blocked by protein kinase C inhibition or by disruption of the cell cytoskeleton. Significant increases in Fos and early growth response (Egr)-1 mRNA levels were stimulated by injury, peaking by 20 min. ERK activation and the induction of Egr-1 mRNA were inhibited in a dose-dependent fashion with PD-98059. Fos mRNA expression was partially blocked by PD-98059. Western blot analysis demonstrated strong expression and nuclear localization of Fos and Egr after wounding. Electrophoretic mobility shift assays demonstrated that nuclear extracts contained a protein that specifically bound double-stranded oligonucleotides containing the Egr consensus binding element. Gel supershift assays demonstrated that the protein-DNA complexes were recognized by anti-Egr antibody. Inhibition of injury-induced ERK activation by PD-98059 or direct interference with Egr by expression of a dominant negative mutant led to significantly reduced in vitro monolayer restitution.


2004 ◽  
Vol 24 (15) ◽  
pp. 6861-6870 ◽  
Author(s):  
Mauro Costa-Mattioli ◽  
Yuri Svitkin ◽  
Nahum Sonenberg

ABSTRACT Translation of poliovirus and hepatitis C virus (HCV) RNAs is initiated by recruitment of 40S ribosomes to an internal ribosome entry site (IRES) in the mRNA 5′ untranslated region. Translation initiation of these RNAs is stimulated by noncanonical initiation factors called IRES trans-activating factors (ITAFs). The La autoantigen is such an ITAF, but functional evidence for the role of La in poliovirus and HCV translation in vivo is lacking. Here, by two methods using small interfering RNA and a dominant-negative mutant of La, we demonstrate that depletion of La causes a dramatic reduction in poliovirus IRES function in vivo. We also show that 40S ribosomal subunit binding to HCV and poliovirus IRESs in vitro is inhibited by a dominant-negative form of La. These results provide strong evidence for a function of the La autoantigen in IRES-dependent translation and define the step of translation which is stimulated by La.


2002 ◽  
Vol 13 (10) ◽  
pp. 3521-3531 ◽  
Author(s):  
Marisa M. Faraldo ◽  
Marie-Ange Deugnier ◽  
Sylvie Tlouzeau ◽  
Jean Paul Thiery ◽  
Marina A. Glukhova

To study the mechanism of β1-integrin function in vivo, we have generated transgenic mouse expressing a dominant negative mutant of β1-integrin under the control of mouse mammary tumor virus (MMTV) promoter (MMTV-β1-cyto). Mammary glands from MMTV-β1-cyto transgenic females present significant growth defects during pregnancy and lactation and impaired differentiation of secretory epithelial cells at the onset of lactation. We report herein that perturbation of β1-integrin function in involuting mammary gland induced precocious dedifferentiation of the secretory epithelium, as shown by the premature decrease in β-casein and whey acidic protein mRNA levels, accompanied by inactivation of STAT5, a transcription factor essential for mammary gland development and up-regulation of nuclear factor-κB, a negative regulator of STAT5 signaling. This is the first study demonstrating in vivo that cell–extracellular matrix interactions involving β1-integrins play an important role in the control of milk gene transcription and in the maintenance of the mammary epithelial cell differentiated state.


Sign in / Sign up

Export Citation Format

Share Document