Cloning of the inhibin/activin βB subunit gene from the Booroola Merino sheep

1991 ◽  
Vol 6 (1) ◽  
pp. 87-93 ◽  
Author(s):  
R. J. Rodgers

ABSTRACT The gene encoding the inhibin/activin βB subunit was isolated from a Booroola Merino ewe which had two copies of the unidentified fertility gene. Both the DNA sequence (>87%) and amino acid sequence (>93%) were highly homologous to those of the human and rat genes. The upstream region of the gene was similar to that of the human and rat genes, having SP1 binding sites and no TATA or CAAT boxes and, like that of the rat, but unlike that of the human gene, no cyclic AMP response elements, suggesting that the βB gene of sheep and rats is regulated differently from that of man.

1994 ◽  
Vol 304 (2) ◽  
pp. 391-398 ◽  
Author(s):  
M L Short ◽  
D Huang ◽  
D M Milkowski ◽  
S Short ◽  
K Kunstman ◽  
...  

The rat lactate dehydrogenase (LDH) A subunit gene promoter contains a putative AP-1 binding site at -295/-289 bp, two consensus Sp1 binding sites at -141/-136 bp and -103/-98 bp, and a single copy of a consensus cyclic AMP-responsive element (CRE) at -48 to -41 bp upstream of the transcription initiation site. Additionally, an as yet unidentified silencer element is located within the -1173/-830 bp 5′-flanking region. Transient transfection analyses of a -1173/+25 bp LDH A-chLoramphenicol acetyltransferase fusion gene has indicated a complete inability of the promoter fragment to direct basal or forskolin-induced transcription. Deletion of the -1173/-830 bp sequence restored basal and cyclic AMP (cAMP)-inducible activity. Point mutations in the Sp1 binding sites of a -830/+25 bp promoter fragment reduced basal but not the relative degree of cAMP-inducible activity. cAMP-regulated transcriptional activity was dependent upon an 8 bp CRE, -TGACGTCA-, located at the -48/-41 bp upstream region. Mutations in the CRE abolished cAMP-mediated induction and reduced basal activity by about 65%. The CRE binds a 47 kDa protein which has previously been identified as CRE binding protein (CREB)-327, an isoform of the activating transcription factor/CREB transcription factor gene family. Co-transfection of a vector that expresses the catalytic subunit of cAMP-dependent protein kinase stimulates LDH A subunit promoter activity suggesting that cAMP induces LDH A subunit gene expression through phosphorylative modification of CREB-327. This study emphasizes a fundamental role of several modules including Sp1 and CREB binding sites in regulating basal and cAMP-mediated transcriptional activity of the LDH A gene.


1999 ◽  
Vol 340 (3) ◽  
pp. 855-862 ◽  
Author(s):  
Zafar ZAMAN ◽  
Susan B. BOWMAN ◽  
Geoff D. KORNFELD ◽  
Alistair J. P. BROWN ◽  
Ian W. DAWES

The yeast LPD1 gene encoding lipoamide dehydrogenase is subject to the general control of amino acid biosynthesis mediated by the GCN4 transcription factor. This is striking in that it demonstrates that GCN4-mediated regulation extends much farther upstream than simply to the direct pathways for amino acid and purine biosynthesis. In yeast, lipoamide dehydrogenase functions in at least three multienzyme complexes: pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase (which function in the entry of pyruvate into, and metabolism via, the citric acid cycle) and glycine decarboxylase. When wild-type cells were shifted from growth on amino acid-rich to amino acid-deficient medium, the expression of lipoamide dehydrogenase was induced approx. 2-fold. In a similar experiment no such induction was observed in isogenic gcn4 mutant cells. Northern analysis indicated that amino acid starvation affected levels of the LPD1 transcript. In the upstream region of LPD1 are three matches to the consensus for control mediated by GCN4. Directed mutagenesis of each site, and of all combinations of sites, suggests that only one site might be important for the general control response under the conditions tested. Gel-retardation analysis with GCN4 protein synthesized in vitro has indicated that GCN4 can bind in vitro to at least two of the consensus motifs.


2020 ◽  
Vol 3 (3) ◽  
pp. e00137
Author(s):  
V.I. Fedchenko ◽  
A.A. Kaloshin ◽  
N.I. Kozlova ◽  
A.T. Kopylov ◽  
A.E. Medvedev

Renalase (RNLS) is a recently discovered protein that plays different roles inside and outside cells. Extracellular RNLS exhibits protective effects on the cell, acting on its receptor proteins, while intracellular RNLS acts as FAD-dependent oxidoreductase (EC 1.6.3.5). The ratio of the intracellular and extracellular forms of this protein, as well as the mechanisms and factors responsible for its transport from the cell, remain unknown. One of the approaches to studying these issues can be the creation of chimeric forms of this protein with modified fragments of its amino acid sequences. This work describes a method for constructing a chimeric human RNLS gene encoding RNLS without its N-terminal peptid


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Anne Bernhardt ◽  
Wieland Meyer ◽  
Volker Rickerts ◽  
Toni Aebischer ◽  
Kathrin Tintelnot

ABSTRACT Scedosporium spp. cause infections (scedosporiosis) in both immunocompetent and immunocompromised individuals and may persistently colonize the respiratory tract in patients with cystic fibrosis (CF). They are less susceptible against azoles than are other molds, such as Aspergillus spp., suggesting the presence of resistance mechanisms. It can be hypothesized that the decreased susceptibility of Scedosporium spp. to azoles is also CYP51 dependent. Analysis of the Scedosporium apiospermum and Scedosporium aurantiacum genomes revealed one CYP51 gene encoding the 14-α-lanosterol demethylase. This gene from 159 clinical or environmental Scedosporium isolates and three Lomentospora prolificans isolates has been sequenced and analyzed. The Scedosporium CYP51 protein clustered with the group of known CYP51B orthologues and showed species-specific polymorphisms. A tandem repeat in the 5′ upstream region of Scedosporium CYP51 like that in Aspergillus fumigatus could not be detected. Species-specific amino acid alterations in CYP51 of Scedosporium boydii, Scedosporium ellipsoideum, Scedosporium dehoogii, and Scedosporium minutisporum isolates were located at positions that have not been described as having an impact on azole susceptibility. In contrast, two of the three S. apiospermum-specific amino acid changes (Y136F and G464S) corresponded to respective mutations in A. fumigatus CYP51A at amino acid positions 121 and 448 (Y121F and G448S, respectively) that had been linked to azole resistance.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Didier Bagnol ◽  
Tom I. Bonner ◽  
Myrna Carlebur ◽  
Anthony P. Davenport ◽  
Stephen M. Foord ◽  
...  

The human gene encoding the QRFP receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on the QRFP receptor [16]; QRFPR, formerly known as the Peptide P518 receptor), previously designated as an orphan GPCR receptor was identified in 2001 by Lee et al. from a hypothalamus cDNA library [15]. However, the reported cDNA (AF411117) is a chimera with bases 1-127 derived from chromosome 1 and bases 155-1368 derived from chromosome 4. When corrected, QRFPR (also referred to as SP9155 or AQ27) encodes a 431 amino acid protein that shares sequence similarities in the transmembrane spanning regions with other peptide receptors. These include neuropeptide FF2 (38%), neuropeptide Y2 (37%) and galanin Gal1 (35%) receptors.


1989 ◽  
Vol 9 (10) ◽  
pp. 4390-4397 ◽  
Author(s):  
K A Lee ◽  
J S Fink ◽  
R H Goodman ◽  
M R Green

The sequence motif CGTCA is critical for binding of a group of cellular transcription factors (ATF, CREB, E4F, and EivF) and for activation of certain E1a-inducible and cyclic AMP (cAMP)-inducible promoters. We have tested different promoter elements containing the CGTCA motif (referred to here as ATF-binding sites) for the ability to function as E1a or cAMP response elements. The adenovirus E4 promoter and the cellular vasoactive intestinal peptide (VIP) promoter responded differently to E1a and cAMP, demonstrating that the activating potential of ATF-binding sites within these promoters is not equivalent. While particular ATF-binding sites were sufficient for the activity of both the E4 (E1a inducibility) and VIP (cAMP inducibility) enhancers, these two enhancers had contrasting effects on E1a- and cAMP-inducible transcription. Thus, the relationship between E1a- and cAMP-inducible transcription is not simply explained by the action of these two inducers through the same promoter elements.


Sign in / Sign up

Export Citation Format

Share Document