scholarly journals ADAMTS-1 is involved in normal follicular development, ovulatory process and organization of the medullary vascular network in the ovary

2005 ◽  
Vol 35 (2) ◽  
pp. 343-355 ◽  
Author(s):  
M Shozu ◽  
N Minami ◽  
H Yokoyama ◽  
M Inoue ◽  
H Kurihara ◽  
...  

To clarify the role of disintegrin-like and metalloproteinase with thrombospondin type I motifs-1 (ADAMTS-1) in ovarian function, we examined abnormalities in ovulatory processes, folliculogenesis and the vascular system of ADAMTS-1 null ovaries. First, when immature female mice were treated with pregnant mare serum gonadotropin (PMSG)/human chorionic gonadotropin (hCG), the number of ovulated oocytes was markedly decreased in ADAMTS-1 null mice in comparision to ADAMTS-1 (+/−) controls. The proportion of anovulated follicles to total mature follicles was significantly higher in ADAMTS-1 null females when compared with controls. The numbers of growing follicles at each stage were counted. The number of follicles at type 5b (late preantral) and later stages was markedly reduced in ADAMTS-1 null mice, irrespective of gonadotropin treatment (no gonadotropins, PMSG alone or PMSG/hCG). These data demonstrate that impairment of ovarian function to ovulate oocytes in ADAMTS-1 null mice occurs at two different levels: in the development of growing follicles and ovulatory processes. Furthermore, ADAMTS-1 null ovaries included a number of unusual atretic follicles that showed no sign of oocyte degeneration but lost the surrounding granulosa cell layers and were considered to be derived from type 4 or 5a follicles. These results suggest that ADAMTS-1 is important for follicular development beyond the type 4 and/or 5a and for maintaining normal granulosa cell layers in follicles. Finally, the number of large blood vessels in the medullar zone was significantly decreased in ADAMTS-1 null mice ovaries, suggesting that ADAMTS-1 is also involved in the organization of the medullary vascular network.

2010 ◽  
Vol 24 (3) ◽  
pp. 540-551 ◽  
Author(s):  
Guidong Yao ◽  
Mianmian Yin ◽  
Jie Lian ◽  
Hui Tian ◽  
Lin Liu ◽  
...  

Abstract Many members of the TGF-β superfamily are indicated to play important roles in ovarian follicular development, such as affecting granulosa cell function and oocyte maturation. Abnormalities associated with TGF-β1 signaling transduction could result in female infertility. MicroRNAs (miRNAs), as small noncoding RNAs, were recently found to regulate gene expression at posttranscriptional levels. However, little is known about the role of miRNAs in TGF-β-mediated granulosa cell proliferation and granulosa cell function. In this study, the miRNA expression profiling was identified from TGF-β1-treated mouse preantral granulosa cells (GCs), and three miRNAs were found to be significantly up-regulated and 13 miRNAs were down-regulated. Among up-regulated miRNAs, miR-224 was the second most significantly elevated miRNA. This up-regulation was attenuated by treatment of GCs with SB431542 (an inhibitor of TGFβ superfamily type I receptors, thus blocking phosphorylation of the downstream effectors Smad2/3), indicating that miR-224 expression was regulated by TGF-β1/Smads pathway. The ectopic expression of miR-224 can enhance TGF-β1-induced GC proliferation through targeting Smad4. Inhibition of endogenous miR-224 partially suppressed GC proliferation induced by TGF-β1. In addition, both miR-224 and TGF-β1 can promote estradiol release from GC, at least in part, through increasing CYP19A1 mRNA levels. This is the first demonstration that miRNAs can control reproductive functions resulting in promoting TGF-β1-induced GC proliferation and ovarian estrogen release. Such miRNA-mediated effects could be potentially used for regulation of reproductive processes or for treatment of reproductive disorders.


2014 ◽  
Vol 53 (3) ◽  
pp. R103-R118 ◽  
Author(s):  
Annu Makker ◽  
Madhu Mati Goel ◽  
Abbas Ali Mahdi

Abnormalities in ovarian function, including defective oogenesis and folliculogenesis, represent a key female reproductive deficiency. Accumulating evidence in the literature has shown that the PI3K/PTEN/Akt and TSC/mTOR signaling pathways are critical regulators of ovarian function including quiescence, activation, and survival of primordial follicles, granulosa cell proliferation and differentiation, and meiotic maturation of oocytes. Dysregulation of these signaling pathways may contribute to infertility caused by impaired follicular development, intrafollicular oocyte development, and ovulation. This article reviews the current state of knowledge of the functional role of the PI3K/PTEN/Akt and TSC/mTOR pathways during mammalian oogenesis and folliculogenesis and their association with female infertility.


Reproduction ◽  
2017 ◽  
Vol 153 (2) ◽  
pp. R59-R68 ◽  
Author(s):  
Gonzalo Cruz ◽  
Daniela Fernandois ◽  
Alfonso H Paredes

Successful reproduction is the result of a myriad interactions in which the ovary and the ovarian follicular reserve play a fundamental role. At present, women who delay maternity until after 30 years of age have a decreased fertility rate due to various causes, including damaged follicles and a reduction in the reserve pool of follicles. Therefore, the period just prior to menopause, also known as the subfertile period, is important. The possibility of modulating the follicular pool and the health of follicles during this period to improve fertility is worth exploring. We have developed an animal model to study the ovarian ageing process during this subfertile period to understand the mechanisms responsible for reproductive senescence. In the rat model, we have shown that the sympathetic nervous system participates in regulating the follicular development during ovarian ageing. This article reviews the existing evidence on the presence and functional role of sympathetic nerve activity in regulating the follicular development during ovarian ageing, with a focus on the subfertile period.Free Spanish abstract: A Spanish translation of this abstract is freely available athttp://www.reproduction-online.org/content/153/2/R59/suppl/DC1.


2004 ◽  
Vol 16 (9) ◽  
pp. 279 ◽  
Author(s):  
D. L. Russell

Female infertility has been reported in two lines of mice with mutation of the Egr-1 gene. One underlying cause of this defect is deficient LH production by pituitary gonadotropes. However, Egr-1 is also acutely regulated by both FSH and LH in ovarian granulosa cells (1). A role for this transcription factor in regulating gonadotrophin responsive target genes and ovarian function is hypothesised. Indeed the LH-receptor is a proposed target of Egr-1 regulation, but this has not been investigated in detail in vivo and is difficult to reconcile with the pattern of Egr-1 expression. In this study, the role of Egr-1 within the ovarian follicle was investigated using exogenous gonadotropin replacement in Egr-1–/– mice . Adult Egr-1–/– female mice superovulated by sequential PMSG and hCG stimulation and mated with proven male breeders failed to produced offspring while 90% of heterozygous females got pregnant and produced litters (7.4 � 2.9 pups per litter) within 22 days of stimulation. Recovery of oocytes from oviducts of immature superovulated mice revealed a reduced ovulation rate in null females (6.3 � 3.8 oocytes) compared to their heterozygous (18.0 � 6.5) and WT (17.8 � 6.8) littermates. Gross morphology and histology of exogenously stimulated ovaries were indistinguishable from their heterozygous or WT counterparts. Surprisingly, no alteration was detectable in the mRNA expression of previously reported direct Egr-1 responsive genes, namely LH-receptor and membrane prostaglandin E synthase (mPGES). Nor were mRNA for two critical ovulatory genes with putative Egr-1 response elements, ADAMTS-1 or versican V1 altered. Temporal and spatial expression of genes involved in ovarian steroidogenesis, P450scc and Cyp17 and LH-receptor, were indistinguishable from normal littermates during exogenously controled follicular development. Combined observations of acute Egr-1 induction by gonadotropins, reduced ovulation and complete infertility suggest an important role for Egr-1 in ovarian function. However, genes identified as targets of Egr-1 regulation in other studies proved to be Egr-1 independent in this model. (1) Russell et al. (2003) Mol. Endo. 17, 520.


2018 ◽  
Vol 30 (1) ◽  
pp. 192
Author(s):  
R. Carrasco ◽  
C. E. Leonardi ◽  
J. Singh ◽  
G. P. Adams

Neurotrophins are molecules involved in the development and survival of neurons and its cellular projections. Results of recent studies have implicated the local role of the high affinity neurotropin receptor, trkA, in bovine ovarian follicle selection and early luteogenesis (Carrasco et al. 2016 Reprod. Biol. Endocrinol. 14, 47), but innervation and neuropeptide control remains an unexplored aspect of ovarian function. P75 is the low-affinity receptor for all neurotrophins and is expressed in ovarian tissue. The objective of this study was to explore the distribution of P75 neurons and fibres within the ovary and to examine the relationship of these components with follicular development. The ovaries of cows (n = 5) were collected at the time of slaughter, 36 h after induced luteolysis (i.e. proestrus). The ovaries were fixed in 4% paraformaldehyde for 48 h, and samples from the ovarian hilus, medulla, and cortex (3 blocks per ovary) were cryo-sectioned (20–50 µm). Tissue sections were incubated for 48 h with a rabbit antibody against rat P75 or a mouse monoclonal antibody against neurofilament. Immunodetection was visualised by an amplification procedure with horseradish peroxidase using nickel DAB as a chromogen. Sections were counterstained with nuclear fast red for follicle identification. Immunoreactive cell bodies were counted in 10 to 20 fields (40×) per section, and data were expressed based on ovarian areas (cortex, medulla, or hilus) as an average count per 40× field per animal. Data among ovarian regions were compared by ANOVA; differences were considered significant when P < 0.05. Antral follicles ≤5 mm displayed strong immunoreactivity in the theca layer, without reaction in the granulosa cells. In contrast, preovulatory follicles were devoid of P75 immuno-reactivity in the theca layer. Oval P75 immunoreactive neuron-like cells were present in all ovarian areas studied. The neuronal nature of the P75 immunoreactive cells was confirmed by the presence of a similar pattern when adjacent sections were stained for neurofilaments, a protein characteristic of neurons. In the stroma of the ovarian cortex and medulla, neurons were present individually (scattered) rather than grouped; however, a dense network of neurons and fibres was detected immediately beneath the ovarian surface epithelium. No differences between the cortex, medulla, and hilus were found in the mean number of immunoreactive cells (10.6 ± 2.8, 14.4 ± 3.6 and 13.9 ± 2.0 cells/40× field, respectively). Immunoreactive neuron-like cells and fibres were in close proximity to blood vessels in the ovarian medulla. Corpora lutea were devoid of P75 immunoreactivity. In conclusion, results document the existence of a neuronal network in the bovine ovary, displaying an association with follicles at different stages of development. The abundance of neuronal components (i.e. neuron cell bodies and axons) in the ovarian stromal and surface epithelium implies a role of innervation (either extrinsic or intrinsic) in the control of ovarian follicular development and function. Research was supported by the Natural Sciences and Engineering Research Council of Canada.


2018 ◽  
Vol 30 (7) ◽  
pp. 958 ◽  
Author(s):  
Karen L. Reader ◽  
Francesco E. Marino ◽  
Helen D. Nicholson ◽  
Gail P. Risbridger ◽  
Elspeth J. Gold

Activins and inhibins play important roles in the development, growth and function of the ovary. Mice lacking inhibin develop granulosa cell tumours in their ovaries that secrete activin A, and these tumours are modulated by increased activin C expression. The aim of the present study was to identify where activin C is expressed in mouse and human ovaries and whether overexpression of activin C modulates normal follicular development in mice. Immunohistochemical staining for the activin βC subunit was performed on sections from mouse and human ovaries and human adult granulosa cell tumours. Stereology techniques were used to quantify oocyte and follicular diameters, and the percentage of different follicular types in ovaries from wild-type mice and those underexpressing inhibin α and/or overexpressing activin C. Staining for activin βC was observed in the oocytes, granulosa cells, thecal cells and surface epithelium of mouse and human ovaries, and in the granulosa-like cells of adult granulosa cell tumours. Overexpression of activin C in mice did not alter follicular development compared with wild-type mice, but it did modulate the development of abnormal early stage follicles in inhibin α-null mice. These results provide further evidence of a role for activin C in the ovary.


2004 ◽  
Vol 16 (9) ◽  
pp. 220
Author(s):  
R. L. Robker ◽  
W. V. Ingman ◽  
S. A. Robertson

Transforming Growth Factor β1 (TGFβ1) is essential for normal female reproduction. Mice with a targeted deletion in the TGFβ1 gene (TGFβ1–/–) have severely impaired fertility with pregnancy occurring in <25% of mated females. TGFβ1 is implicated in several aspects of ovarian function, including potentiation of granulosa cell proliferation and suppression of luteal cell apoptosis. Our initial observations indicate that estrous cycling is disrupted in TGFβ1–/– mice and that ovulation rate is reduced. To further investigate how impaired ovarian function contributes to the infertility of TGFβ1–/– mice, ovaries were isolated from TGFβ1+/+ and TGFβ1–/– littermates at proestrus and fixed and sectioned for examination of follicle morphology and growth. BrdU labelling was performed to detect granulosa cell proliferation and blood samples were obtained for analysis of gonadotrophins and ovarian steroid hormones. Histological examination showed that ovaries from TGFβ1–/– mice were smaller than those of TGF–1+/+ mice, however large antral follicles were observed, indicating that TGFβ1 is not essential for granulosa cell proliferation. Compared to TGFβ1+/+ ovaries however, there were fewer antral follicles and only rare corpora lutea. Interestingly, in some cases there were large numbers of macrophages surrounding small follicles suggesting increased follicular atresia and/or altered macrophage activity in the TGFβ1–/– ovaries. Ovaries and serum were also isolated from females at d4 post-coital for assessment of corpora lutea morphology. TGFβ1–/– ovaries weighed less and had fewer corpora lutea than TGFβ1+/+ ovaries. TGFβ1–/– corpora lutea also contained increased numbers of apoptotic cells and infiltrating macrophages indicative of premature luteal regression. Circulating progesterone levels were reduced in TGFβ1–/– females, as was progesterone production per corpus luteum further indicating a functional defect in luteal maintenance. Cumulatively these observations show that TGFβ1 has essential roles in regulation of ovarian macrophage populations, in normal follicular development and in the generation, maintenance and steroidogenic function of corpora lutea.


2010 ◽  
Vol 299 (1) ◽  
pp. E101-E109 ◽  
Author(s):  
Margareta D. Pisarska ◽  
Fang-Ting Kuo ◽  
Ikuko K. Bentsi-Barnes ◽  
Salma Khan ◽  
Gillian M. Barlow

Forkhead L2 (FOXL2) is expressed in the ovary and acts as a transcriptional repressor of the steroidogenic acute regulatory (StAR) gene, a marker of granulosa cell differentiation. Human FOXL2 mutations that produce truncated proteins lacking the COOH terminus result in blepharophimosis/ptosis/epicanthus inversus (BPES) syndrome type I, which is associated with premature ovarian failure (POF). In this study, we investigated whether FOXL2's activity as a transcriptional repressor is regulated by phosphorylation. We found that FOXL2 is phosphorylated at a serine residue and, using yeast two-hybrid screening, identified LATS1 as a potential FOXL2-interacting protein. LATS1 is a serine/threonine kinase whose deletion in mice results in an ovarian phenotype similar to POF. Using coimmunoprecipitation and kinase assays, we confirmed that LATS1 binds to FOXL2 and demonstrated that LATS1 phosphorylates FOXL2 at a serine residue. Moreover, we found that FOXL2 and LATS1 are coexpressed in developing mouse gonads and in granulosa cells of small and medium follicles in the mouse ovary. Last, we demonstrated that coexpression with LATS1 enhances FOXL2's activity as a repressor of the StAR promoter, and this results from the kinase activity of LATS1. These results provide novel evidence that FOXL2 is phosphorylated by LATS1 and that this phosphorylation enhances the transcriptional repression of the StAR gene, a marker of granulosa cell differentiation. These data support our hypothesis that phosphorylation of FOXL2 may be a control mechanism regulating the rate of granulosa cell differentiation and hence, follicle maturation, and its dysregulation may contribute to accelerated follicular development and POF in BPES type I.


2021 ◽  
Author(s):  
◽  
Derek Heath

<p>Bone morphogenetic factor 15 (BMP15) and growth differentiation factor 9 (GDF9) are two oocyte-secreted factors with well documented effects on ovarian follicular development and ovulation-rate. The aims of these studies were to: (i) identify the molecular forms of BMP15 and GDF9 that are produced and secreted by both the ovine and bovine oocyte using highly specific monclonal antibodies; (ii) assess the biological activity of some recombinant molecular forms of BMP15 and GDF9; (iii) visualise the various molecular forms using protein modelling techniques and; (iv) provide a hypothetical model of how oocyte-secreted form(s) of BMP15, GDF9 and their cell surface receptors may interact.  Using genetic modifications and transformations of HEK293 cells, recombinant forms of ovine (o) BMP15, including a BMP15 (S356C) mutant capable of forming covalent dimers, and oGDF9 were produced. The bioactivity of these proteins was established using a rat granulosa cell proliferation bioassay. The specificity of the monoclonal antibodies MN2-61A (anti-BMP15) and 37A (anti-GDF9) used in these studies, and determination of the forms they recognise, was examined by Western blotting. The recombinant forms of oBMP15 were further interrogated by purification using both immobilised metal affinity chromatography (IMAC) and reverse phase HPLC. The BMP15 and GDF9 proteins produced and/or secreted by ovine and bovine oocytes, before and after in vitro incubation, were identified and compared with the molecular forms(s) of recombinant oBMP15 or oGDF9 using Western blotting under non-reducing, reducing and cross-linking conditions.  The molecular forms of recombinant oBMP15 and oGDF9 comprise mainly mature monomers with a lesser amount of the uncleaved pro-mature form. Mature domains, in the dimeric mature form, were detected for oGDF9 and oBMP15 (S356C), but not oBMP15. These mature domains were almost entirely located within high molecular weight multimeric complexes, which likely also contain the pro-region. In contrast, BMP15 and GDF9 secreted from ruminant oocytes under in vitro conditions were found mainly in an unprocessed promature form, along with some fully processed mature domains that did not interact to form detectable mature homodimers or heterodimers. Throughout ovarian follicular development, BMP15 and GDF9 are co-expressed and it has been established that these two factors have synergistic effects on granulosa cell proliferation both in vitro and in vivo and also on follicular maturation and ovulation-rate in vivo. Moreover, the recombinant proteins oBMP15 and oGDF9 generated for this study, when added together, also demonstrated a synergistic effect in the granulosa cell proliferation assay but this was not observed for oBMP15 (S356C) and oGDF9.  Currently, no adequate model has been proposed to explain how interactions between the cell membrane and forms of oocyte-derived BMP15 and GDF9 achieve their synergistic effects. To investigate this, two homology models of the promature BMP15 and GDF9 proteins were generated using promature porcine TGFB1 and human BMP9 as templates. These models, together with the previously determined forms of GDF9 and BMP15 produced by the ruminant oocyte, were used to visualise their potential interactions, both with each other and with their receptors. This report describes a model showing the possible interactions involved in a synergistic response. In this model, the mature domain is presented to the type II receptor by the proregion and heterodimers form at the level of the receptor. Differences, following heterodimerisation in the conformation and orientation between GDF9 and its type I receptor, as well as between type I and type II receptors, relative to that in homodimers, could explain how heterodimerisation leads to increased Smad3 phosphorylation and subsequent down-stream somatic cell responses.</p>


Author(s):  
Ming Li ◽  
Ling Xue ◽  
Weibin Xu ◽  
Pingping Liu ◽  
Feng Li

AbstractThe mechanism related to ovarian follicular is complex, which has not been fully elucidated. Abundant reports have confirmed that the ovarian function development is closely related to sympathetic innervation. As one of the major neurotransmitters, norepinephrine (NE) is considered an effective regulator of ovarian functions like granulosa cell (GC) apoptosis. However, the mechanism between NE and GC apoptosis in rat is still unclear. In our study, GCs were isolated and cultured in vitro with NE treatment. The apoptosis of GCs was facilitated by NE. Wilms tumor 1 (WT1) was found to be significantly downregulated in GCs after NE treatment, and overexpression of WT1 repressed apoptosis in rat GCs induced by NE. rno-miR-128-3p was found to be significantly enhanced by NE in GCs, and inhibition of rno-miR-128-3p repressed apoptosis in rat GCs induced by NE. Mechanistically, rno-miR-128-3p interacted with WT1 and repressed its expression. In summary, inhibition of rno-miR-128-3p may enhance WT1 expression, and then repress NE-induced apoptosis in rat GCs. Our research may provide a new insight for the improvement of ovarian follicular development.


Sign in / Sign up

Export Citation Format

Share Document