Role of activin C in normal ovaries and granulosa cell tumours of mice and humans

2018 ◽  
Vol 30 (7) ◽  
pp. 958 ◽  
Author(s):  
Karen L. Reader ◽  
Francesco E. Marino ◽  
Helen D. Nicholson ◽  
Gail P. Risbridger ◽  
Elspeth J. Gold

Activins and inhibins play important roles in the development, growth and function of the ovary. Mice lacking inhibin develop granulosa cell tumours in their ovaries that secrete activin A, and these tumours are modulated by increased activin C expression. The aim of the present study was to identify where activin C is expressed in mouse and human ovaries and whether overexpression of activin C modulates normal follicular development in mice. Immunohistochemical staining for the activin βC subunit was performed on sections from mouse and human ovaries and human adult granulosa cell tumours. Stereology techniques were used to quantify oocyte and follicular diameters, and the percentage of different follicular types in ovaries from wild-type mice and those underexpressing inhibin α and/or overexpressing activin C. Staining for activin βC was observed in the oocytes, granulosa cells, thecal cells and surface epithelium of mouse and human ovaries, and in the granulosa-like cells of adult granulosa cell tumours. Overexpression of activin C in mice did not alter follicular development compared with wild-type mice, but it did modulate the development of abnormal early stage follicles in inhibin α-null mice. These results provide further evidence of a role for activin C in the ovary.

Development ◽  
2002 ◽  
Vol 129 (10) ◽  
pp. 2541-2553 ◽  
Author(s):  
Johanna Laurikkala ◽  
Johanna Pispa ◽  
Han-Sung Jung ◽  
Pekka Nieminen ◽  
Marja Mikkola ◽  
...  

X-linked and autosomal forms of anhidrotic ectodermal dysplasia syndromes (HED) are characterized by deficient development of several ectodermal organs, including hair, teeth and exocrine glands. The recent cloning of the genes that underlie these syndromes, ectodysplasin (ED1) and the ectodysplasin A receptor (EDAR), and their identification as a novel TNF ligand-receptor pair suggested a role for TNF signaling in embryonic morphogenesis. In the mouse, the genes of the spontaneous mutations Tabby (Ta) and downless (dl) were identified as homologs of ED1 and EDAR, respectively. To gain insight into the function of this signaling pathway in development of skin and hair follicles, we analyzed the expression and regulation of Eda and Edar in wild type as well as Tabby and Lef1 mutant mouse embryos. We show that Eda and Edar expression is confined to the ectoderm and occurs in a pattern that suggests a role of ectodysplasin/Edar signaling in the interactions between the ectodermal compartments and the formation and function of hair placodes. By using skin explant cultures, we further show that this signaling pathway is intimately associated with interactions between the epithelial and mesenchymal tissues. We also find that Ta mutants lack completely the placodes of the first developing tylotrich hairs, and that they do not show patterned expression of placodal genes, including Bmp4, Lef1, Shh, Ptch and Edar, and the genes for β-catenin and activin A. Finally, we identified activin as a mesenchymal signal that stimulates Edar expression and WNT as a signal that induces Eda expression, suggesting a hierarchy of distinct signaling pathways in the development of skin and hair follicles. In conclusion, we suggest that Eda and Edar are associated with the onset of ectodermal patterning and that ectodysplasin/edar signaling also regulates the morphogenesis of hair follicles.


2021 ◽  
Vol 15 (11) ◽  
pp. e0009943
Author(s):  
Haixia Wei ◽  
Hongyan Xie ◽  
Jiale Qu ◽  
Anqi Xie ◽  
Shihao Xie ◽  
...  

B cells played an important role in Schistosoma infection-induced diseases. TLR7 is an intracellular member of the innate immune receptor. The role of TLR7 on B cells mediated immune response is still unclear. Here, C57BL/6 mice were percutaneously infected by S. japonicum for 5–6 weeks. The percentages and numbers of B cells increased in the infected mice (p < 0.05), and many activation and function associated molecules were also changed on B cells. More splenic cells of the infected mice expressed TLR7, and B cells were served as the main cell population. Moreover, a lower level of soluble egg antigen (SEA) specific antibody and less activation associated molecules were found on the surface of splenic B cells from S. japonicum infected TLR7 gene knockout (TLR7 KO) mice compared to infected wild type (WT) mice (p < 0.05). Additionally, SEA showed a little higher ability in inducing the activation of B cells from naive WT mice than TLR7 KO mice (p < 0.05). Finally, the effects of TLR7 on B cells are dependent on the activation of NF-κB p65. Altogether, TLR7 was found modulating the splenic B cell responses in S. japonicum infected C57BL/6 mice.


2007 ◽  
Vol 98 (10) ◽  
pp. 806-812 ◽  
Author(s):  
Vandana Dole ◽  
Wolfgang Bergmeier ◽  
Ian Patten ◽  
Junichi Hirahashi ◽  
Tanya Mayadas ◽  
...  

SummaryWe have previously shown that activated platelets in circulation stimulate release of endothelial Weibel-Palade bodies thus increasing leukocyte rolling in venules. P-selectin on the activated platelets mediates adhesion to leukocytes via PSGL-1 and is rapidly shed into plasma. We were interested in studying the role of PSGL-1 in regulating expression and function of platelet P-selectin. We show here that PSGL-1 is critical for the activation of endothelial cells in venules of mice infused with activated platelets. The interaction of platelet P-selectin with PSGL-1 is also required for P-selectin shedding, as P-selectin was retained significantly longer on the surface of activated platelets infused into PSGL-1-/- compared to wild-type mice. The leukocyte integrin αMβ2 (Mac-1) was not required for P-selectin shedding. In addition to shedding, P-selectin can be downregulated from the platelet surface through internalization and this is the predominant mechanism in the absence of PSGL-1. We demonstrate that leukocyte- neutrophil elastase,known to cleave P-selectin in vitro, is not the major sheddase for P-selectin in vivo. In conclusion, interaction of platelet P-selectin with PSGL-1 is crucial for activation of the endothelium andWeibel-Palade body secretion. The interaction with PSGL-1 also results in rapid shedding of P-selectin thus downregulating the inflammatory potential of the platelet.


Blood ◽  
2011 ◽  
Vol 117 (16) ◽  
pp. 4293-4303 ◽  
Author(s):  
Changming Lu ◽  
Xin Huang ◽  
Xiaoxiao Zhang ◽  
Kristin Roensch ◽  
Qing Cao ◽  
...  

Abstract Dendritic cells (DCs) are potent antigen-presenting cells derived from hematopoietic progenitor cells and circulating monocytes. To investigate the role of microRNAs (miRNAs) during DC differentiation, maturation, and function, we profiled miRNA expression in human monocytes, immature DCs (imDCs), and mature DCs (mDCs). Stage-specific, differential expression of 27 miRNAs was found during monocyte differentiation into imDCs and mDCs. Among them, decreased miR-221 and increased miR-155 expression correlated with p27kip1 accumulation in DCs. Silencing of miR-221 or overexpressing of miR-155 in DCs resulted in p27kip1 protein increase and DC apoptosis. Moreover, mDCs from miR-155−/− mice were less apoptotic than those from wild-type mice. Silencing of miR-155 expression had little effect on DC maturation but reduced IL-12p70 production, whereas miR-155 overexpression in mDCs enhanced IL-12p70 production. Kip1 ubiquitination-promoting complex 1, suppressor of cytokine signaling 1, and CD115 (M-CSFR) were functional targets of miR-155. Furthermore, we provide evidence that miR-155 indirectly regulated p27kip1 protein level by targeting Kip1 ubiquitination-promoting complex 1. Thus, our study uncovered miRNA signatures during monocyte differentiation into DCs and the new regulatory role of miR-221 and miR-155 in DC apoptosis and IL-12p70 production.


2020 ◽  
Vol 26 (13) ◽  
pp. 1486-1494 ◽  
Author(s):  
Melinda E. Tóth ◽  
Brigitta Dukay ◽  
Zsófia Hoyk ◽  
Miklós Sántha

Serum lipid levels are closely related to the structure and function of blood vessels. Chronic hyperlipidemia may lead to damage in both the cardio- and the cerebrovascular systems. Vascular dysfunctions, including impairments of the blood-brain barrier, are known to be associated with neurodegenerative diseases. A growing number of evidence suggests that cardiovascular risk factors, such as hyperlipidemia, may increase the likelihood of developing dementia. Due to differences in lipoprotein metabolism, wild-type mice are protected against dietinduced hypercholesterolemia, and their serum lipid profile is different from that observed in humans. Therefore, several transgenic mouse models have been established to study the role of different apolipoproteins and their receptors in lipid metabolism, as well as the complications related to pathological lipoprotein levels. This minireview focused on a transgenic mouse model overexpressing an apolipoprotein, the human ApoB-100. We discussed literature data and current advancements on the understanding of ApoB-100 induced cardio- and cerebrovascular lesions in order to demonstrate the involvement of this type of apolipoprotein in a wide range of pathologies, and a link between hyperlipidemia and neurodegeneration.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Raquel López-Gálvez ◽  
María Eugenia de la Morena-Barrio ◽  
Alberto López-Lera ◽  
Monika Pathak ◽  
Antonia Miñano ◽  
...  

Abstract Background Congenital disorders of glycosylation (CDG) are rare diseases with impaired glycosylation and multiorgan disfunction, including hemostatic and inflammatory disorders. Factor XII (FXII), the first element of the contact phase, has an emerging role in hemostasia and inflammation. FXII deficiency protects against thrombosis and the p.Thr309Lys variant is involved in hereditary angioedema through the hyperreactivity caused by the associated defective O-glycosylation. We studied FXII in CDG aiming to supply further information of the glycosylation of this molecule, and its functional and clinical effects. Plasma FXII from 46 PMM2-CDG patients was evaluated by coagulometric and by Western Blot in basal conditions, treated with N-glycosydase F or activated by silica or dextran sulfate. A recombinant FXII expression model was used to validate the secretion and glycosylation of wild-type and variants targeting the two described FXII N-glycosylation sites (p.Asn230Lys; p.Asn414Lys) as well as the p.Thr309Lys variant. Results PMM2-CDG patients had normal FXII levels (117%) but high proportions of a form lacking N-glycosylation at Asn414. Recombinant FXII p.Asn230Lys, and p.Asn230Lys&p.Asn414Lys had impaired secretion and increased intracellular retention compared to wild-type, p.Thr309Lys and p.Asn414Lys variants. The hypoglycosylated form of PMM2-CDG activated similarly than FXII fully glycosylated. Accordingly, no PMM2-CDG had angioedema. FXII levels did not associate to vascular events, but hypoglycosylated FXII, like hypoglycosylated transferrin, antithrombin and FXI levels did it. Conclusions N-glycosylation at Asn230 is essential for FXII secretion. PMM2-CDG have high levels of FXII lacking N-glycosylation at Asn414, but this glycoform displays similar activation than fully glycosylated, explaining the absence of angioedema in CDG.


2019 ◽  
Vol 116 (30) ◽  
pp. 14979-14988 ◽  
Author(s):  
Sven H. Schmidt ◽  
Matthias J. Knape ◽  
Daniela Boassa ◽  
Natascha Mumdey ◽  
Alexandr P. Kornev ◽  
...  

Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein, and LRRK2 mutants are recognized risk factors for Parkinson’s disease (PD). Although the precise mechanisms that control LRRK2 regulation and function are unclear, the importance of the kinase domain is strongly implicated, since 2 of the 5 most common familial LRRK2 mutations (G2019S and I2020T) are localized to the conserved DFGψ motif in the kinase core, and kinase inhibitors are under development. Combining the concept of regulatory (R) and catalytic (C) spines with kinetic and cell-based assays, we discovered a major regulatory mechanism embedded within the kinase domain and show that the DFG motif serves as a conformational switch that drives LRRK2 activation. LRRK2 is quite unusual in that the highly conserved Phe in the DFGψ motif, which is 1 of the 4 R-spine residues, is replaced with tyrosine (DY2018GI). A Y2018F mutation creates a hyperactive phenotype similar to the familial mutation G2019S. The hydroxyl moiety of Y2018 thus serves as a “brake” that stabilizes an inactive conformation; simply removing it destroys a key hydrogen-bonding node. Y2018F, like the pathogenic mutant I2020T, spontaneously forms LRRK2-decorated microtubules in cells, while the wild type and G2019S require kinase inhibitors to form filaments. We also explored 3 different mechanisms that create kinase-dead pseudokinases, including D2017A, which further emphasizes the highly synergistic role of key hydrophobic and hydrophilic/charged residues in the assembly of active LRRK2. We thus hypothesize that LRRK2 harbors a classical protein kinase switch mechanism that drives the dynamic activation of full-length LRRK2.


2007 ◽  
Vol 18 (5) ◽  
pp. 1609-1620 ◽  
Author(s):  
Diana Caracino ◽  
Cheryl Jones ◽  
Mark Compton ◽  
Charles L. Saxe

Scar/WAVE proteins, members of the conserved Wiskott-Aldrich syndrome (WAS) family, promote actin polymerization by activating the Arp2/3 complex. A number of proteins, including a complex containing Nap1, PIR121, Abi1/2, and HSPC300, interact with Scar/WAVE, though the role of this complex in regulating Scar function remains unclear. Here we identify a short N-terminal region of Dictyostelium Scar that is necessary and sufficient for interaction with HSPC300 and Abi in vitro. Cells expressing Scar lacking this N-terminal region show abnormalities in F-actin distribution, cell morphology, movement, and cytokinesis. This is true even in the presence of wild-type Scar. The data suggest that the first 96 amino acids of Scar are necessary for participation in a large-molecular-weight protein complex, and that this Scar-containing complex is responsible for the proper localization and regulation of Scar. The presence of mis-regulated or unregulated Scar has significant deleterious effects on cells and may explain the need to keep Scar activity tightly controlled in vivo either by assembly in a complex or by rapid degradation.


2004 ◽  
Vol 78 (1) ◽  
pp. 257-265 ◽  
Author(s):  
Patricia Szajner ◽  
Andrea S. Weisberg ◽  
Bernard Moss

ABSTRACT Temperature-sensitive mutants of vaccinia virus, with genetic changes that map to the open reading frame encoding the F10 protein kinase, exhibit a defect at an early stage of viral morphogenesis. To further study the role of the enzyme, we constructed recombinant vaccinia virus vF10V5i, which expresses inducible V5 epitope-tagged F10 and is dependent on a chemical inducer for plaque formation and replication. In the absence of inducer, viral membrane formation was delayed and crescents and occasional immature forms were detected only late in infection. When the temperature was raised from 37 to 39°C, the block in membrane formation persisted throughout the infection. The increased stringency may be explained by a mild temperature sensitivity of the wild-type F10 kinase, which reduced the activity of the very small amount expressed in the absence of inducer, or by the thermolability of an unphosphorylated kinase substrate or uncomplexed F10-interacting protein. Further analyses demonstrated that tyrosine and threonine phosphorylation of the A17 membrane component was inhibited in the absence of inducer. The phosphorylation defect could be overcome by transfection of plasmids that express wild-type F10, but not by plasmids that express F10 with single amino acid substitutions that abolished catalytic activity. Although the mutated forms of F10 were stable and concentrated in viral factories, only the wild-type protein complemented the assembly and replication defects of vF10V5i in the absence of inducer. These studies provide evidence for an essential catalytic role of the F10 kinase in vaccinia virus morphogenesis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 112-112
Author(s):  
Aleksandra Stojanovic ◽  
Matvey Gorovoy ◽  
Tatyana Voyno-Yasenetskaya ◽  
Xiaoping Du

Abstract LIM Kinase (LIMK)-1 is a member of the LIMK family of serine-threonine protein kinases that phosphorylates actin-binding protein cofilin and regulates actin cytoskeleton organization. LIMK1 is expressed in many cell types including platelets but the exact role of LIMK1 in platelet function remains unclear. To determine the role of LIMK1 in platelet activation, wild type or LIMK1 knockout mouse platelets were stimulated with platelet agonists. Platelet aggregation and granule secretion were analyzed. Integrin-dependent second wave of platelet aggregation induced by von Willebrand factor (VWF) in the presence of VWF activator botrocetin was abolished in LIMK1 knockout platelets. In contrast, platelet aggregation in response to the agonist peptide of protease-activated receptor-4 (PAR4, thrombin receptor), ADP and collagen was either not affected or enhanced in LIMK1 knockout platelets in comparison with wild type mouse platelets. Thus, LIMK appears to play an important role in platelet activation stimulated by VWF binding to its platelet receptor, glycoprotein Ib-IX complex (GPIb-IX) but had no stimulatory effect on or negatively regulate the GPIb-IX-independent platelet activation pathways mediated by PAR-4, ADP receptors and collagen receptors. To determine whether ligand binding to GPIb-IX stimulates LIMK activation and function, platelets were stimulated with VWF in the presence of either ristocetin or botrocetin, and immunoblotted with antibodies specifically recognizing phosphorylated LIMK1 (Serine 505) or cofilin (Serine 3). VWF induced phosphorylation of LIMK1 and LIMK substrate cofilin. Thus, VWF indeed stimulates LIMK1 activation and function. An important physiological role of GPIb-IX in platelets is to mediate platelet adhesion to subendothelial-bound VWF under shear stress at sites of vascular injury. To determine whether LIMK1 is important in platelet adhesion, we investigated whether LIMK1 knockout affected platelet adhesion to VWF-coated surfaces. LIMK1 knockout platelets are defective in mediating stable platelet adhesion to vWF under shear stress, suggesting that LIMK1 plays an important role in GPIb signaling and GPIb-IX-mediated integrin activation that is required for stable platelet adhesion under shear stress. Importantly, LIMK1 knockout mice showed significant delay in the formation of occlusive thrombus following FeCl3-induced carotid artery injury in comparison with wild type mice, indicating that the role of LIMK1 in GPIb-IX-mediated platelet activation is important in in vivo thrombosis. Together, our study reveals that LIMK1 plays an important role in GPIb-IX-mediated platelet activation and arterial thrombosis in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document