scholarly journals Expression of thyroid hormone receptors A and B in developing rat tissues; evidence for extensive posttranscriptional regulation

2007 ◽  
Vol 38 (5) ◽  
pp. 523-535 ◽  
Author(s):  
Richard Keijzer ◽  
Piet-Jan E Blommaart ◽  
Wil T Labruyère ◽  
Jacqueline L M Vermeulen ◽  
Behrouz Zandieh Doulabi ◽  
...  

The perinatal changes in the pattern of expression of the thyroid hormone receptor (TR) isoforms TRα 1 TRα 2, TRβ 1, and TRβ 2 were investigated using in situ hybridization and immunohistochemistry, and RT-PCR and western blotting as visualization and quantification techniques respectively. In liver, lung, and kidney, TRα mRNA was expressed in the stromal and TRβ mRNA in the parenchymal component of the tissues. When compared with liver, TRα mRNA concentrations were tenfold higher in lung, kidney, and intestine, and 100-fold higher in brain, with TRα 2 mRNA concentrations exceeding those of TRα 1 5-to 10-fold. Tissue TRβ 1 mRNA concentrations were similar in liver, lung, and brain, and 3- to 5-fold higher in kidney and intestine. None of the TRβ 2 mRNA could be detected outside the pituitary. Tissue TRα 2 and TRβ 1 protein levels reached adult levels at 5 days before birth, whereas TRα 1 protein peaked after birth. Because of the distinct time-course of thyroid hormone-binding receptors TRα 1 and TRβ 1, we speculate that an initiating, TRβ 1-mediated signaling from the parenchyma is followed by a TRα 1-mediated response in the stroma. When compared with organs with a complementary parenchymal–stromal expression pattern, organs with extensive cellular co-expression of TRα and TRβ (brain and intestinal epithelium) were characterized by a very low TRα protein: mRNA ratio, implying a low translational efficiency of TR mRNA or a high turnover of TR protein. The data indicate that the TR-dependent regulatory cascades are controlled differently in organs with a complementary tissue expression pattern and in those with cellular co-expression of the TRα and TRβ genes.

2008 ◽  
Vol 411 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Kyung-Chul Choi ◽  
So-Young Oh ◽  
Hee-Bum Kang ◽  
Yoo-Hyun Lee ◽  
Seungjoo Haam ◽  
...  

A central issue in mediating repression by nuclear hormone receptors is the distinct or redundant function between co-repressors N-CoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptor). To address the functional relationship between SMRT and N-CoR in TR (thyroid hormone receptor)-mediated repression, we have identified multiple TR target genes, including BCL3 (B-cell lymphoma 3-encoded protein), Spot14 (thyroid hormone-inducible hepatic protein), FAS (fatty acid synthase), and ADRB2 (β-adrenergic receptor 2). We demonstrated that siRNA (small interfering RNA) treatment against either N-CoR or SMRT is sufficient for the de-repression of multiple TR target genes. By the combination of sequence mining and physical association as determined by ChIP (chromatin immunoprecipitation) assays, we mapped the putative TREs (thyroid hormone response elements) in BCL3, Spot14, FAS and ADRB2 genes. Our data clearly show that SMRT and N-CoR are independently recruited to various TR target genes. We also present evidence that overexpression of N-CoR can restore repression of endogenous genes after knocking down SMRT. Finally, unliganded, co-repressor-free TR is defective in repression and interacts with a co-activator, p300. Collectively, these results suggest that both SMRT and N-CoR are limited in cells and that knocking down either of them results in co-repressor-free TR and consequently de-repression of TR target genes.


1991 ◽  
Vol 11 (10) ◽  
pp. 5079-5089 ◽  
Author(s):  
D E Banker ◽  
J Bigler ◽  
R N Eisenman

The c-erbA proto-oncogene encodes the thyroid hormone receptor, a ligand-dependent transcription factor which plays an important role in vertebrate growth and development. To define the role of the thyroid hormone receptor in developmental processes, we have begun studying c-erbA gene expression during the ontogeny of Xenopus laevis, an organism in which thyroid hormone has well-documented effects on morphogenesis. Using polymerase chain reactions (PCR) as a sensitive assay of specific gene expression, we found that polyadenylated erbA alpha RNA is present in Xenopus cells at early developmental stages, including the fertilized egg, blastula, gastrula, and neurula. By performing erbA alpha-specific PCR on reverse-transcribed RNAs from high-density sucrose gradient fractions prepared from early-stage embryos, we have demonstrated that these erbA transcripts are recruited to polysomes. Therefore, erbA is expressed in Xenopus development prior to the appearance of the thyroid gland anlage in tailbud-stage embryos. This implies that erbA alpha/thyroid hormone receptors may play ligand-independent roles during the early development of X. laevis. Quantitative PCR revealed a greater than 25-fold range in the steady-state levels of polyadenylated erbA alpha RNA across early stages of development, as expressed relative to equimolar amounts of total embryonic RNA. Substantial increases in the levels of erbA alpha RNA were noted at stages well after the onset of zygotic transcription at the mid-blastula transition, with accumulation of erbA alpha transcripts reaching a relative maximum in advance of metamorphosis. We also show that erbA alpha RNAs are expressed unequally across Xenopus neural tube embryos. This differential expression continues through later stages of development, including metamorphosis. This finding suggests that erbA alpha/thyroid hormone receptors may play roles in tissue-specific processes across all of Xenopus development.


Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3709-3718 ◽  
Author(s):  
M. Knipper ◽  
C. Bandtlow ◽  
L. Gestwa ◽  
I. Kopschall ◽  
K. Rohbock ◽  
...  

All cranial nerves, as well as the VIIIth nerve which invades the cochlea, have a proximal end in which myelin is formed by Schwann cells and a distal end which is surrounded by oligodendrocytes. The question which arises in this context is whether peripheral and central parts of these nerves myelinate simultaneously or subsequently and whether the myelination of either of the parts occurs simultaneously at the onset of the cochlea function and under the control of neuronal activity. In the present paper, we examined the relative time course of the myelinogenesis of the distal part of the VIIIth nerve by analyzing the expression of peripheral protein P0, proteolipid protein and myelin basic protein. To our surprise, we observed that the expression of myelin markers in the peripheral and central part of the intradural part of the VIIIth nerve started simultaneously, from postnatal day 2 onwards, long before the onset of cochlea function. The expression rapidly achieved saturation levels on the approach to postnatal day 12, the day on which the cochlea function commenced. Because of its importance for the neuronal and morphological maturation of the cochlea during this time, an additional role of thyroid hormone in cochlear myelinogenesis was considered. Indeed, it transpires that this hormone ensures the rapid accomplishment of glial gene expression, not only in the central but also in the peripheral part of the cochlea. Furthermore, an analysis of the thyroid hormone receptors, TRaplha and TRbeta, indicates that TRbeta is necessary for myelinogenesis of the VIIIth nerve. Rapid thyroid hormone-dependent saturation of myelin marker gene expression in Schwann cells and oligodendrocytes of the VIIIth nerve may guarantee nerve conduction and synchronized impulse transmission at the onset of hearing. The thyroid hormone-dependent commencement of nerve conduction is discussed in connection with the patterning refinement of central auditory pathways and the acquisition of deafness.


2000 ◽  
Vol 278 (6) ◽  
pp. R1545-R1554 ◽  
Author(s):  
Fushun Yu ◽  
Sten Göthe ◽  
Lilian Wikström ◽  
Douglas Forrest ◽  
Björn Vennström ◽  
...  

Skeletal muscle is known to be a target for the active metabolite of thyroid hormone, i.e., 3,5,3′-triiodothyronine (T3). T3 acts by repressing or activating genes coding for different myosin heavy chain (MHC) isoforms via T3 receptors (TRs). The diverse function of T3 is presumed to be mediated by TR-α1 and TR-β, but the function of specific TRs in regulating MHC isoform expression has remained undefined. In this study, TR-deficient mice were used to expand our knowledge of the mechanisms by which T3 regulates the expression of specific MHC isoforms via distinct TRs. In fast-twitch extensor digitorum longus (EDL) muscle, TR-α1-, TR-β-, or TR-α1β-deficient mice showed a small but statistically significant decrease ( P < 0.05) of type IIB MHC content and an increased number of type I fibers. In the slow-twitch soleus, the β/slow MHC (type I) isoform was significantly ( P < 0.001) upregulated in the TR-deficient mice, but this effect was highly dependent on the type of receptor deleted. The lack of TR-β had no significant effect on the expression of MHC isoforms. An increase ( P < 0.05) of type I MHC was observed in the TR-α1-deficient muscle. A dramatic overexpression ( P < 0.001) of the slow type I MHC and a corresponding downregulation of the fast type IIA MHC ( P < 0.001) was observed in TR-α1β-deficient mice. The muscle- and fiber-specific differences in MHC isoform expression in the TR-α1β-deficient mice resembled the MHC isoform transitions reported in hypothyroid animals, i.e., a mild MHC transition in the EDL, a dramatic but not complete upregulation of the β/slow MHC isoform in the soleus, and a variable response to TR deficiency in different soleus muscle fibers. Thus the consequences on muscle are similar in the absence of thyroid hormone or absence of thyroid hormone receptors, indicating that TR-α1 and TR-β together mediate the known actions of T3. However, it remains unknown how thyroid hormone exerts muscle- and muscle fiber-specific effects in its action. Finally, although developmental MHC transitions were not studied specifically in this study, the absence of embryonic and fetal MHC isoforms in the TR-deficient mice indicates that ultimately the transition to the adult MHC isoforms is not solely mediated by TRs.


1993 ◽  
Vol 13 (10) ◽  
pp. 5970-5980
Author(s):  
H W Chen ◽  
M L Privalsky

Genetic lesions that function as dominant negative mutations in microbial systems have long been recognized. It is only relatively recently, however, that similar dominant negative mutations have been implicated as a basis for genetic and neoplastic disorders in vertebrates. We describe here a dissection of the actions of the erbA oncogene protein, an aberrant form of thyroid hormone receptor that acts as a dominant negative inhibitor of other nuclear hormone receptors. We demonstrate that the ErbA oncoprotein interferes with thyroid hormone and trans-retinoic acid receptors by competing for binding to the corresponding response elements. Heterodimerization of the ErbA oncoprotein with these receptors does not play an observable role in repression. In contrast, however, the ErbA oncoprotein does efficiently form a heterodimer with the retinoid X receptor (RXR) class of nuclear hormone receptors; complex formation enhances the DNA-binding properties of the ErbA protein but dramatically interferes with the ability of the RXR component to activate gene expression. Our results indicate that the erbA oncogene may play a previously unanticipated role in neoplasia by interfering with RXR function.


1998 ◽  
Vol 12 (10) ◽  
pp. 1551-1557 ◽  
Author(s):  
Wongi Seol ◽  
Bettina Hanstein ◽  
Myles Brown ◽  
David D. Moore

Abstract SHP (short heterodimer partner) is an unusual orphan receptor that lacks a conventional DNA-binding domain. Previous results have shown that it interacts with several other nuclear hormone receptors, including the retinoid and thyroid hormone receptors, and inhibits their ligand-dependent transcriptional activation. Here we show that SHP also interacts with estrogen receptors and inhibits their function. In mammalian and yeast two-hybrid systems as well as glutathione-S-transferase pull-down assays, SHP interacts specifically with estrogen receptor-α (ERα) in an agonist-dependent manner. The same assay systems using various deletion mutants of SHP map the interaction domain with ERα to the same SHP sequences required for interaction with the nonsteroid hormone receptors such as retinoid X receptor and thyroid hormone receptor. In transient cotransfection assays, SHP inhibits estradiol -dependent activation by ERα by about 5-fold. In contrast, SHP interacts with ERβ independent of ligand and reduces its ability to activate transcription by only 50%. These data suggest that SHP functions to regulate estrogen signaling through a direct interaction with ERα.


2004 ◽  
Vol 378 (2) ◽  
pp. 549-557 ◽  
Author(s):  
Keiko NAKANO ◽  
Akio MATSUSHITA ◽  
Shigekazu SASAKI ◽  
Hiroko MISAWA ◽  
Kozo NISHIYAMA ◽  
...  

The molecular mechanism involved in the liganded thyroid hormone receptor suppression of the TSHβ (thyroid-stimulating hormone β, or thyrotropin β) gene transcription is undetermined. One of the main reasons is the limitation of useful cell lines for the experiments. We have developed an assay system using non-pituitary CV1 cells and studied the negative regulation of the TSHβ gene. In CV1 cells, the TSHβ–CAT (chloramphenicol acetyltransferase) reporter was stimulated by Pit1 and GATA2 and suppressed by T3 (3,3´,5-tri-iodothyronine)-bound thyroid hormone receptor. The suppression was dependent on the amounts of T3 and the receptor. Unliganded receptor did not stimulate TSHβ activity, suggesting that the receptor itself is not an activator. Analyses using various receptor mutants revealed that the intact DNA-binding domain is crucial to the TSHβ gene suppression. Co-activators and co-repressors are not necessarily essential, but are required for the full suppression of the TSHβ gene. Among the three receptor isoforms, β2 exhibited the strongest inhibition and its protein level was the most predominant in a thyrotroph cell line, TαT1, in Western blotting. The dominant-negative effects of various receptor mutants measured on the TSHβ–CAT reporter were not simple mirror images of those in the positive regulation under physiological T3 concentration.


Sign in / Sign up

Export Citation Format

Share Document