AN INVESTIGATION OF THE PATHOGENESIS OF HASHIMOTO'S DISEASE BY THYROID TISSUE CULTURE

1960 ◽  
Vol 20 (2) ◽  
pp. 83-NP ◽  
Author(s):  
W. J. IRVINE

SUMMARY Human thyroid cells were grown in tissue culture in media containing normal human serum, Hashimoto serum, and rabbit sera containing antibodies to purified human thyroglobulin and to crude thyroid extract, respectively. The thyroid cells grew equally well in all media, with the exception of the rabbit serum containing antibodies to crude thyroid extract. Intact thyroid cells obtained from tissue culture failed to fix Hashimoto antibodies in the presence of complement, whereas the constituents of disrupted thyroid cells gave a strongly positive complement-fixation test with Hashimoto serum. It is therefore suggested that the intact thyroid cell is impermeable to complement-fixing Hashimoto antibody. The evidence afforded by the present work adds further weight to the belief that Hashimoto's disease may not be due to a simple auto-immunizing process consequent upon the interaction of thyroid antigen and the known circulating auto-antibodies. Evidence in support of an alternative hypothesis involving 'cell-bound' antibodies with disruption of the follicular basement membrane is discussed.

Author(s):  
M. Rotondi ◽  
F. Coperchini ◽  
G. Ricci ◽  
M. Denegri ◽  
L. Croce ◽  
...  

Abstract Purpose SARS-COV-2 is a pathogenic agent belonging to the coronavirus family, responsible for the current global world pandemic. Angiotensin-converting enzyme 2 (ACE-2) is the receptor for cellular entry of SARS-CoV-2. ACE-2 is a type I transmembrane metallo-carboxypeptidase involved in the Renin-Angiotensin pathway. By analyzing two independent databases, ACE-2 was identified in several human tissues including the thyroid. Although some cases of COVID-19-related subacute thyroiditis were recently described, direct proof for the expression of the ACE-2 mRNA in thyroid cells is still lacking. Aim of the present study was to investigate by RT-PCR whether the mRNA encoding for ACE-2 is present in human thyroid cells. Methods RT-PCR was performed on in vitro ex vivo study on thyroid tissue samples (15 patients undergoing thyroidectomy for benign thyroid nodules) and primary thyroid cell cultures. Results The ACE-2 mRNA was detected in all surgical thyroid tissue samples (n = 15). Compared with two reporter genes (GAPDH: 0.052 ± 0.0026 Cycles−1; β-actin: 0.044 ± 0.0025 Cycles−1; ACE-2: 0.035 ± 0.0024 Cycles−1), the mean level of transcript expression for ACE-2 mRNA was abundant. The expression of ACE-2 mRNA in follicular cells was confirmed by analyzing primary cultures of thyroid cells, which expressed the ACE-2 mRNA at levels similar to tissues. Conclusions The results of the present study demonstrate that the mRNA encoding for the ACE-2 receptor is expressed in thyroid follicular cells, making them a potential target for SARS-COV-2 entry. Future clinical studies in patients with COVID-19 will be required for increase our understanding of the thyroid repercussions of SARS-CoV-2 infection.


Endocrinology ◽  
2006 ◽  
Vol 147 (6) ◽  
pp. 3107-3113 ◽  
Author(s):  
Chun-Rong Chen ◽  
Gregorio D. Chazenbalk ◽  
Kolja A. Wawrowsky ◽  
Sandra M. McLachlan ◽  
Basil Rapoport

Abstract The prevailing concept is that, in human thyroid tissue in vivo, all cell-surface TSH receptors (TSHR) cleave into disulfide linked A and B subunits. Because this viewpoint is based on studies using homogenized thyroid tissue and because of TSHR fragility, we studied TSHR subunit structure in intact thyroid cells, primary human thyrocyte cultures, FRTL-5 rat thyroid cells, and WRO (follicular) and NPA (papillary) thyroid cancer cell lines. To overcome the handicap of very low TSHR expression in thyroid cells, we generated a TSHR-expressing adenovirus (TSHR-Ad-RGD) with an integrin-binding RGD motif enabling efficient entry into cells lacking the coxsackie-adenovirus receptor. Two days after TSHR-Ad-RGD infection, [125I]TSH cross-linking to intact cells revealed uncleaved, single-chain TSHR as well as cleaved TSHR A subunits on the surface of all four thyroid cell types. The extent of TSHR cleavage, which is independent of the level of TSHR expression, was consistently lower in the human thyroid cancer cell lines than in the other cell lines. In flow cytometry studies after TSHR-Ad-RGD infection, strong signals were detected in all four thyroid cell types using a monoclonal antibody that primarily recognizes the uncleaved TSHR. Finally, using the same monoclonal antibody, confocal microscopy confirmed the presence of single-chain TSHR on TSHR-Ad-RGD-infected thyroid cells. In summary, TSH covalent cross-linking, flow cytometry, and confocal microscopy demonstrate the presence of uncleaved TSHR on the human thyrocyte surface. These data provide stronger evidence for this alternative than the contrary view based on the finding of only cleaved TSHR in homogenized thyroid cells.


Endocrine ◽  
2021 ◽  
Author(s):  
Francesca Coperchini ◽  
Gianluca Ricci ◽  
Laura Croce ◽  
Marco Denegri ◽  
Rubina Ruggiero ◽  
...  

Abstract Introduction Angiotensin-converting-enzyme-2 (ACE-2) was demonstrated to be the receptor for cellular entry of SARS-CoV-2. ACE-2 mRNA was identified in several human tissues and recently also in thyroid cells in vitro. Purpose Aim of the present study was to investigate the effect of pro-inflammatory cytokines on the ACE-2 mRNA levels in human thyroid cells in primary cultures. Methods Primary thyroid cell cultures were treated with IFN-γ and TNF-α alone or in combination for 24 h. ACE-2 mRNA levels were measured by RT-PCR. As a control, the levels of IFN-γ inducible chemokine (CXCL10) were measured in the respective cell culture supernatants. Results The mean levels of ACE-2 mRNA increased after treatment with IFN-γ and TNF-α in all the thyroid cell preparations, while the combination treatment did not consistently synergically increase ACE-2-mRNA. At difference, CXCL10 was consistently increased by IFN-γ and synergically further increased by the combination treatment with IFN-γ + TNF-α, with respect to IFN-γ alone. Conclusions The results of the present study show that IFN-γ and, to a lesser extent TNF-α consistently increase ACE-2 mRNA levels in NHT primary cultures. More interestingly, the combined stimulation (proven to be effective according to the synergic effect registered for CXCL10) produces different responses in terms of ACE-2 mRNA modulation. These results would suggest that elevated levels of pro-inflammatory cytokines could facilitate the entering of the virus in cells by further increasing ACE-2 expression and/or account for the different degree of severity of SARS-COV-2 infection. This hypothesis deserves to be confirmed by further specific studies.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1518
Author(s):  
Maria Qatato ◽  
Vaishnavi Venugopalan ◽  
Alaa Al-Hashimi ◽  
Maren Rehders ◽  
Aaron D. Valentine ◽  
...  

Trace amine-associated receptor 1 (rodent Taar1/human TAAR1) is a G protein-coupled receptor that is mainly recognized for its functions in neuromodulation. Previous in vitro studies suggested that Taar1 may signal from intracellular compartments. However, we have shown Taar1 to localize apically and on ciliary extensions in rodent thyrocytes, suggesting that at least in the thyroid, Taar1 may signal from the cilia at the apical plasma membrane domain of thyrocytes in situ, where it is exposed to the content of the follicle lumen containing putative Taar1 ligands. This study was designed to explore mouse Taar1 (mTaar1) trafficking, heterologously expressed in human and rat thyroid cell lines in order to establish an in vitro system in which Taar1 signaling from the cell surface can be studied in future. The results showed that chimeric mTaar1-EGFP traffics to the apical cell surface and localizes particularly to spherical structures of polarized thyroid cells, procilia, and primary cilia upon serum-starvation. Moreover, mTaar1-EGFP appears to form high molecular mass forms, possibly homodimers and tetramers, in stably expressing human thyroid cell lines. However, only monomeric mTaar1-EGFP was cell surface biotinylated in polarized human thyrocytes. In polarized rat thyrocytes, mTaar1-EGFP is retained in the endoplasmic reticulum, while cilia were reached by mTaar1-EGFP transiently co-expressed in combination with an HA-tagged construct of the related mTaar5. We conclude that Taar1 trafficking to cilia depends on their integrity. The results further suggest that an in vitro cell model was established that recapitulates Taar1 trafficking in thyrocytes in situ, in principle, and will enable studying Taar1 signaling in future, thus extending our general understanding of its potential significance for thyroid autoregulation.


1997 ◽  
Vol 136 (5) ◽  
pp. 508-515 ◽  
Author(s):  
Simone A R van de Graaf ◽  
Erwin Pauws ◽  
Jan J M de Vijlder ◽  
Carrie Ris-Stalpers

Abstract We developed a transient transfection system for human thyroglobulin (TG) cDNA in both human thyroid cells and in COS-1 cells. Four overlapping TG cDNA fragments were amplified by reverse transcription-PCR from RNA of normal thyroid tissue. The most 5′ fragment includes the natural translation initiation site and the sequence encoding the signal peptide (SP). After subcloning, the nucleotide sequence was determined and compared with the published human sequence, resulting in the detection of 30 nucleotide variations. For validation purposes, all variations were screened in 6–12 normal human alleles. Twenty-one were present in all screened alleles and have to be revised in the published nucleotide sequence. Since one variation concerns a triplet insertion, the coding sequence of the mature human thyroglobulin is 8307 nucleotides encoding 2750 amino acids. The TG cDNA constructs were transiently transfected in HTori 3 and COS-1 cells and protein expression was detected using a polyclonal anti-human-TG on fixed cells and after SDS-PAGE. In both cell-lines all four TG protein fragments were expressed. The mannose structures detected on the proteins by lectins and localization after expression in the cells suggest that only the N-terminal TG fragment (containing the SP) is directed to the endoplasmatic reticulum but is unable to reach the Golgi complex. The described expression system in human thyrocytes will be a helpful tool in studying the structure–function relationship of human TG in thyroid hormonogenesis. European Journal of Endocrinology 136 508–515


2008 ◽  
Vol 198 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Ling Jin ◽  
Vanessa Chico-Galdo ◽  
Claude Massart ◽  
Christine Gervy ◽  
Viviane De Maertelaere ◽  
...  

Chronic administration of acrylamide has been shown to induce thyroid tumors in rat. In vitro acrylamide also causes DNA damage, as demonstrated by the comet assay, in various types of cells including human thyroid cells and lymphocytes, as well as rat thyroid cell lines. In this work, mice were administered acrylamide in their drinking water in doses comparable with those used in rats, i.e., around 3–4 mg/kg per day for mice treated 2, 6, and 8 months. Some of the mice were also treated with thyroxine (T4) to depress the activity of the thyroid. Others were treated with methimazole that inhibits thyroid hormone synthesis and consequently secretion and thus induces TSH secretion and thyroid activation. These moderate treatments were shown to have their known effect on the thyroid (e.g. thyroid hormone and thyrotropin serum levels, thyroid gland morphology…). Besides, T4 induced an important polydipsia and degenerative hypertrophy of adrenal medulla. Acrylamide exerted various discrete effects and at high doses caused peripheral neuropathy, as demonstrated by hind-leg paralysis. However, it did not induce thyroid tumorigenesis. These results show that the thyroid tumorigenic effects of acrylamide are not observed in another rodent species, the mouse, and suggest the necessity of an epidemiological study in human to conclude on a public health policy.


Sign in / Sign up

Export Citation Format

Share Document