scholarly journals Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis

Author(s):  
M. Rotondi ◽  
F. Coperchini ◽  
G. Ricci ◽  
M. Denegri ◽  
L. Croce ◽  
...  

Abstract Purpose SARS-COV-2 is a pathogenic agent belonging to the coronavirus family, responsible for the current global world pandemic. Angiotensin-converting enzyme 2 (ACE-2) is the receptor for cellular entry of SARS-CoV-2. ACE-2 is a type I transmembrane metallo-carboxypeptidase involved in the Renin-Angiotensin pathway. By analyzing two independent databases, ACE-2 was identified in several human tissues including the thyroid. Although some cases of COVID-19-related subacute thyroiditis were recently described, direct proof for the expression of the ACE-2 mRNA in thyroid cells is still lacking. Aim of the present study was to investigate by RT-PCR whether the mRNA encoding for ACE-2 is present in human thyroid cells. Methods RT-PCR was performed on in vitro ex vivo study on thyroid tissue samples (15 patients undergoing thyroidectomy for benign thyroid nodules) and primary thyroid cell cultures. Results The ACE-2 mRNA was detected in all surgical thyroid tissue samples (n = 15). Compared with two reporter genes (GAPDH: 0.052 ± 0.0026 Cycles−1; β-actin: 0.044 ± 0.0025 Cycles−1; ACE-2: 0.035 ± 0.0024 Cycles−1), the mean level of transcript expression for ACE-2 mRNA was abundant. The expression of ACE-2 mRNA in follicular cells was confirmed by analyzing primary cultures of thyroid cells, which expressed the ACE-2 mRNA at levels similar to tissues. Conclusions The results of the present study demonstrate that the mRNA encoding for the ACE-2 receptor is expressed in thyroid follicular cells, making them a potential target for SARS-COV-2 entry. Future clinical studies in patients with COVID-19 will be required for increase our understanding of the thyroid repercussions of SARS-CoV-2 infection.

1987 ◽  
Vol 113 (3) ◽  
pp. 403-412 ◽  
Author(s):  
S. Y. Chow ◽  
Y. C. Yen-Chow ◽  
H. S. White ◽  
D. M. Woodbury

ABSTRACT Iodide uptake by primary cultures of turtle thyroid follicular cells is directly proportional to the Na + concentration and is inversely proportional to the HCO3− concentration in culture medium, but is not affected by the Cl− concentration. Addition of 4,4′-di-isothiocyano-2,2′-stilbene disulphonate (DIDS; 10 μmol/l and higher doses) to medium containing different concentrations of Na+ (5–140 mmol/l), HCO3− (0–40 mmol/l) and Cl − (120 mmol/l) generally enhanced iodide uptake by the cultured cells; however, there was no significant effect in Na+-free and in low Cl− (90 mmol/l and less) medium. The inhibitory effects on iodide uptake of ouabain, frusemide and perchlorate were attenuated by DIDS which also antagonized the stimulatory effects on iodide uptake of TSH, although both DIDS and TSH increased the 125I− cell/medium ratio when they were given alone. At doses of 100 μmol/l and higher, DIDS lowered the intracellular pH of cultured cells when the pH of the medium was maintained at a constant level. It also increased the intracellular Cl − concentration, but had no effect on intracellular Na+ or K +. The input and specific resistances of cell membranes in cultured thyroid cells and in isolated thyroid slices increased (decreased conductance) after adding DIDS to the perfusion fluids. Both Na+/K+- and HCO3−-ATPase activities in homogenates of turtle thyroid tissue were inhibited by DIDS. Results from this investigation demonstrate (1) that in addition to preventing the leak of iodide from thyroid cells, DIDS may act to increase the sensitivity of the Na + -anion carrier to I− and thereby increases iodide uptake, and (2) that a HCO3−–Cl− exchange system is present in the thyroid cell membrane and appears to be linked to the transport of iodide into thyroid cells. J. Endocr. (1987) 113, 403–412


Endocrine ◽  
2021 ◽  
Author(s):  
Francesca Coperchini ◽  
Gianluca Ricci ◽  
Laura Croce ◽  
Marco Denegri ◽  
Rubina Ruggiero ◽  
...  

Abstract Introduction Angiotensin-converting-enzyme-2 (ACE-2) was demonstrated to be the receptor for cellular entry of SARS-CoV-2. ACE-2 mRNA was identified in several human tissues and recently also in thyroid cells in vitro. Purpose Aim of the present study was to investigate the effect of pro-inflammatory cytokines on the ACE-2 mRNA levels in human thyroid cells in primary cultures. Methods Primary thyroid cell cultures were treated with IFN-γ and TNF-α alone or in combination for 24 h. ACE-2 mRNA levels were measured by RT-PCR. As a control, the levels of IFN-γ inducible chemokine (CXCL10) were measured in the respective cell culture supernatants. Results The mean levels of ACE-2 mRNA increased after treatment with IFN-γ and TNF-α in all the thyroid cell preparations, while the combination treatment did not consistently synergically increase ACE-2-mRNA. At difference, CXCL10 was consistently increased by IFN-γ and synergically further increased by the combination treatment with IFN-γ + TNF-α, with respect to IFN-γ alone. Conclusions The results of the present study show that IFN-γ and, to a lesser extent TNF-α consistently increase ACE-2 mRNA levels in NHT primary cultures. More interestingly, the combined stimulation (proven to be effective according to the synergic effect registered for CXCL10) produces different responses in terms of ACE-2 mRNA modulation. These results would suggest that elevated levels of pro-inflammatory cytokines could facilitate the entering of the virus in cells by further increasing ACE-2 expression and/or account for the different degree of severity of SARS-COV-2 infection. This hypothesis deserves to be confirmed by further specific studies.


1960 ◽  
Vol 20 (2) ◽  
pp. 83-NP ◽  
Author(s):  
W. J. IRVINE

SUMMARY Human thyroid cells were grown in tissue culture in media containing normal human serum, Hashimoto serum, and rabbit sera containing antibodies to purified human thyroglobulin and to crude thyroid extract, respectively. The thyroid cells grew equally well in all media, with the exception of the rabbit serum containing antibodies to crude thyroid extract. Intact thyroid cells obtained from tissue culture failed to fix Hashimoto antibodies in the presence of complement, whereas the constituents of disrupted thyroid cells gave a strongly positive complement-fixation test with Hashimoto serum. It is therefore suggested that the intact thyroid cell is impermeable to complement-fixing Hashimoto antibody. The evidence afforded by the present work adds further weight to the belief that Hashimoto's disease may not be due to a simple auto-immunizing process consequent upon the interaction of thyroid antigen and the known circulating auto-antibodies. Evidence in support of an alternative hypothesis involving 'cell-bound' antibodies with disruption of the follicular basement membrane is discussed.


2003 ◽  
Vol 30 (3) ◽  
pp. 399-409 ◽  
Author(s):  
F Pacifico ◽  
L Ulianich ◽  
S De Micheli ◽  
S Treglia ◽  
A Leonardi ◽  
...  

Maintaining a high Ca(2+) concentration in the lumen of the endoplasmic reticulum (ER), by the action of sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCAs), is important in many cellular processes, such as Ca(2+)-mediated cytosolic signaling in response to extracellular stimuli, cell growth and proliferation, and synthesis, processing and folding of ER-translated proteins. In the thyroid gland, SERCAs have not been studied yet, and there is little information available on general problems such as the expression of SERCAs following neoplastic transformation. In this study we investigated the expression of SERCA2b and SERCA3 in rat thyroid tIssue and, in addition, in normal and transformed rat thyroid cell lines. RT-PCR and Northern blot assays showed that SERCA2b is the SERCA form preferentially expressed in the thyroid. In rat thyroid, SERCA2b mRNA was expressed at a higher level than that of other non-muscle tIssues such as liver or spleen, but at much lower level than in brain. On the other hand, SERCA3 mRNA was not detected in thyroid by Northern blot analysis, or barely detected by RT-PCR assays. We also studied the SERCA2b expression pattern in PC Cl3 thyroid cells transformed by several oncogenes that induce different degrees of malignancy and dedifferentiation. RT-PCR and Northern blot assays showed that SERCA2b mRNA expression dramatically decreased in highly tumorigenic thyroid cells, while expression of glyceraldehyde-3-phosphate dehydrogenase mRNA, a housekeeping gene used as internal control, exhibited no variations. The dramatic down-regulation of SERCA2b expression in fully transformed thyroid cells was also evident by Western blot analysis. Also, following neoplastic transformation of thyroid cells, the enzymatic activity of SERCA2b was reduced in a measure which correlated with the mRNA and protein levels. Therefore, rat thyrocytes expressed intermediate levels of SERCAs, mostly the SERCA2b isoform. This pattern of expression was basically reproduced in fully differentiated thyroid cells in culture and was sensitive to neoplastic transformation.


2021 ◽  
pp. 030098582110188
Author(s):  
Jana Jankovic ◽  
Martina Dettwiler ◽  
Martin González Fernández ◽  
Eve Tièche ◽  
Kerstin Hahn ◽  
...  

Thyrotropin receptor (TSHR), sodium iodide symporter (NIS), pendrin, and thyroid peroxidase (TPO) are essential for the uptake of iodine by follicular thyroid cells. The aim of this study was to establish immunohistochemistry (IHC) protocols for TSHR, NIS, pendrin, and TPO in canine tissues and characterize their expression in organoids derived from canine follicular cell thyroid carcinoma (FTC) and in the respective primary tumors. This constitutes a fundamental step to establish organoids as a model to study the uptake of iodine in canine FTC. Commercially available antibodies directed against human proteins were selected. Antibody specificity was confirmed by western blot using lysates of the HTori-3 human thyroid cell line and healthy canine thyroid gland. IHC was validated using HTori-3 cells and a set of canine normal tissues including healthy thyroid gland. The expression of TSHR, NIS, pendrin, and TPO was evaluated in 3 organoid lines derived from FTC and respective primary tumors. All 4 antibodies produced specific bands by western blot and cytoplasmic labeling in follicular cells by IHC in both human HTori-3 cells and canine thyroid gland. NIS also showed basolateral membrane immunolabeling in follicular cells. All 4 proteins were highly expressed in organoids derived from FTC. The expression was similar or higher compared to the primary tumors. The results of this study characterize organoids derived from canine FTC as a suitable in vitro model to investigate iodine uptake, opening new research possibilities in the field of canine thyroid cancer therapy.


Endocrinology ◽  
2006 ◽  
Vol 147 (6) ◽  
pp. 3107-3113 ◽  
Author(s):  
Chun-Rong Chen ◽  
Gregorio D. Chazenbalk ◽  
Kolja A. Wawrowsky ◽  
Sandra M. McLachlan ◽  
Basil Rapoport

Abstract The prevailing concept is that, in human thyroid tissue in vivo, all cell-surface TSH receptors (TSHR) cleave into disulfide linked A and B subunits. Because this viewpoint is based on studies using homogenized thyroid tissue and because of TSHR fragility, we studied TSHR subunit structure in intact thyroid cells, primary human thyrocyte cultures, FRTL-5 rat thyroid cells, and WRO (follicular) and NPA (papillary) thyroid cancer cell lines. To overcome the handicap of very low TSHR expression in thyroid cells, we generated a TSHR-expressing adenovirus (TSHR-Ad-RGD) with an integrin-binding RGD motif enabling efficient entry into cells lacking the coxsackie-adenovirus receptor. Two days after TSHR-Ad-RGD infection, [125I]TSH cross-linking to intact cells revealed uncleaved, single-chain TSHR as well as cleaved TSHR A subunits on the surface of all four thyroid cell types. The extent of TSHR cleavage, which is independent of the level of TSHR expression, was consistently lower in the human thyroid cancer cell lines than in the other cell lines. In flow cytometry studies after TSHR-Ad-RGD infection, strong signals were detected in all four thyroid cell types using a monoclonal antibody that primarily recognizes the uncleaved TSHR. Finally, using the same monoclonal antibody, confocal microscopy confirmed the presence of single-chain TSHR on TSHR-Ad-RGD-infected thyroid cells. In summary, TSH covalent cross-linking, flow cytometry, and confocal microscopy demonstrate the presence of uncleaved TSHR on the human thyrocyte surface. These data provide stronger evidence for this alternative than the contrary view based on the finding of only cleaved TSHR in homogenized thyroid cells.


1981 ◽  
Vol 90 (1) ◽  
pp. 113-NP ◽  
Author(s):  
J. G. DICKSON ◽  
S. HOVSÉPIAN ◽  
G. FAYET ◽  
S. LISSITZKY

Primary cultures were initiated using thyroid tissue obtained at operation from patients with Graves's disease. The in-vitro conditions which permitted the formation of functional follicular structures in both primary cultures and derived sub-cultures were examined. In both situations, culture without the addition of calf serum to the medium resulted in the formation of follicles in response to thyrotrophin. In primary cultures the response to stimulation by exogenous thyrotrophin was variable. However, cells derived from long-term primary monolayers responded to thyrotrophin stimulation in a more predictable manner. In sub-cultures, the ability of cells to concentrate and organify iodide was augmented in a dose-dependent fashion in response to thyrotrophin (0 to 0·2 mu./ml); maximal values of 20 to 80 times those of control cultures being obtained. While follicular structure was maintained at higher hormone concentrations, iodide-trapping capacity declined. Similar effects were produced by both low and high purity thyrotrophin and by dibutyryl cyclic AMP. Thyroid cells from two patients with a genetic defect of iodide organification exhibited the same lesion in vitro.


Endocrinology ◽  
2004 ◽  
Vol 145 (3) ◽  
pp. 1464-1472 ◽  
Author(s):  
M. J. Costa ◽  
Y. Song ◽  
P. Macours ◽  
C. Massart ◽  
M. C. Many ◽  
...  

Abstract Partition of signaling molecules in sphingolipid-cholesterol-enriched membrane domains, among which are the caveolae, may contribute to signal transduction efficiency. In normal thyroid, nothing is known about a putative TSH/cAMP cascade compartmentation in caveolae or other sphingolipid-cholesterol-enriched membrane domains. In this study we show for the first time that caveolae are present in the apical membrane of dog and human thyrocytes: caveolin-1 mRNA presence is demonstrated by Northern blotting in primary cultures and that of the caveolin-1 protein by immunohistochemistry performed on human thyroid tissue. The TSH receptor located in the basal membrane can therefore not be located in caveolae. We demonstrate for the first time by biochemical methods the existence of sphingolipid-cholesterol-enriched domains in human and dog thyroid follicular cells that contain caveolin, flotillin-2, and the insulin receptor. We assessed a possible sphingolipid-cholesterol-enriched domains compartmentation of the TSH receptor and the α- subunit of the heterotrimeric Gs and Gq proteins using two approaches: Western blotting on detergent-resistant membranes isolated from thyrocytes in primary cultures and the influence of 10 mm methyl-β-cyclodextrin, a cholesterol chelator, on basal and stimulated cAMP accumulation in intact thyrocytes. The results from both types of experiments strongly suggest that the TSH/cAMP cascade in thyroid cells is not associated with sphingolipid-cholesterol-enriched membrane domains.


1996 ◽  
Vol 148 (1) ◽  
pp. 77-85 ◽  
Author(s):  
R Rossi ◽  
P Franceschetti ◽  
I Maestri ◽  
E Magri ◽  
L Cavazzini ◽  
...  

Abstract Androgen-binding activity has been identified in normal and pathological thyroids, but evidence for the expression of the canonic androgen receptor (AR) in the thyroid has not been provided so far. In this study we have used reverse transcription (RT)-PCR to examine RNA expression of the canonic AR gene in human thyroid tissues, in primary cultures of human thyrocytes and in a variety of neoplastic thyroid cell lines (NPA, TPC and WRO). An AR cDNA fragment with the expected size of 262 bp was detected in normal tissues and cultured thyrocytes as well as in neoplastic cell lines, demonstrating that the gene for AR is indeed expressed in thyroid follicular cells. Immunocytochemical analysis revealed the presence of the AR protein in cancer cell lines and androgen treatment increased nuclear positivity to AR. In a survey of 35 thyroid tissues AR cDNA was detected in all the non-neoplastic samples (6 normal and 3 goitrous) and in 19 of 26 neoplastic samples. AR cDNA was not detected in 4 of the 9 follicular adenomas and in 3 of the 12 papillary carcinomas. AR was revealed by immunohistochemistry in 1 of 2 normal thyroids, in 1 goiter and in 1 of 2 neoplastic thyroids. These findings show the presence of the canonic AR in the human thyroid. Journal of Endocrinology (1996) 148, 77–85


1996 ◽  
Vol 151 (2) ◽  
pp. 185-194 ◽  
Author(s):  
R Rossi ◽  
M C Zatelli ◽  
P Franceschetti ◽  
I Maestri ◽  
E Magri ◽  
...  

Abstract Sex steroid-binding activities have been identified by several authors in normal and pathological thyroids and the expression of the canonic androgen receptor (AR) has recently been demonstrated in human thyroid follicular cells. In order to assess what influence, if any, androgen exposure has on thyroid cell growth, the effect of dihydrotestosterone (DHT) on [3H]thymidine (thy) incorporation and cell proliferation was investigated in thyroid follicular cells in vitro. In a primary culture of goitrous cells, DHT induced a significant reduction of [3H]thy incorporation at concentrations ranging from 10−12 to 10−8 m, with a more pronounced effect at 10−9 m. At this concentration, the inhibitory effect was evident after both 24 and 48 h of treatment and in various types of primary thyroid cell cultures. In goitrous cells, the DHT-induced decrease of [3H]thy was associated with a reduction of expression of the proliferation-associated nuclear Ki-67 antigen, a protein commonly used to assess cell growth fraction. In TPC cells, an AR-positive thyroid papillary carcinoma cell line, DHT at concentrations between 10−12 and 10−8 m significantly decreased the growth rate. DHT (10−9 m) produced an approximately 50–60% inhibition of cell proliferation and the antiandrogen cyproterone acetate was capable of reversing such effects. The DHT-induced reduction of TPC cell proliferation was associated with a significant reduction of c-myc RNA levels. Thyroperoxidase mRNA levels and thyroglobulin production were not reduced by androgen in primary cultures of goitrous cells. In conclusion, our results indicated that androgens may have a role in this gland by reducing the proliferation, but not the function, of follicular cells. Journal of Endocrinology (1996) 151, 185–194


Sign in / Sign up

Export Citation Format

Share Document