scholarly journals Evidence that Human Thyroid Cells Express Uncleaved, Single-Chain Thyrotropin Receptors on Their Surface

Endocrinology ◽  
2006 ◽  
Vol 147 (6) ◽  
pp. 3107-3113 ◽  
Author(s):  
Chun-Rong Chen ◽  
Gregorio D. Chazenbalk ◽  
Kolja A. Wawrowsky ◽  
Sandra M. McLachlan ◽  
Basil Rapoport

Abstract The prevailing concept is that, in human thyroid tissue in vivo, all cell-surface TSH receptors (TSHR) cleave into disulfide linked A and B subunits. Because this viewpoint is based on studies using homogenized thyroid tissue and because of TSHR fragility, we studied TSHR subunit structure in intact thyroid cells, primary human thyrocyte cultures, FRTL-5 rat thyroid cells, and WRO (follicular) and NPA (papillary) thyroid cancer cell lines. To overcome the handicap of very low TSHR expression in thyroid cells, we generated a TSHR-expressing adenovirus (TSHR-Ad-RGD) with an integrin-binding RGD motif enabling efficient entry into cells lacking the coxsackie-adenovirus receptor. Two days after TSHR-Ad-RGD infection, [125I]TSH cross-linking to intact cells revealed uncleaved, single-chain TSHR as well as cleaved TSHR A subunits on the surface of all four thyroid cell types. The extent of TSHR cleavage, which is independent of the level of TSHR expression, was consistently lower in the human thyroid cancer cell lines than in the other cell lines. In flow cytometry studies after TSHR-Ad-RGD infection, strong signals were detected in all four thyroid cell types using a monoclonal antibody that primarily recognizes the uncleaved TSHR. Finally, using the same monoclonal antibody, confocal microscopy confirmed the presence of single-chain TSHR on TSHR-Ad-RGD-infected thyroid cells. In summary, TSH covalent cross-linking, flow cytometry, and confocal microscopy demonstrate the presence of uncleaved TSHR on the human thyrocyte surface. These data provide stronger evidence for this alternative than the contrary view based on the finding of only cleaved TSHR in homogenized thyroid cells.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1518
Author(s):  
Maria Qatato ◽  
Vaishnavi Venugopalan ◽  
Alaa Al-Hashimi ◽  
Maren Rehders ◽  
Aaron D. Valentine ◽  
...  

Trace amine-associated receptor 1 (rodent Taar1/human TAAR1) is a G protein-coupled receptor that is mainly recognized for its functions in neuromodulation. Previous in vitro studies suggested that Taar1 may signal from intracellular compartments. However, we have shown Taar1 to localize apically and on ciliary extensions in rodent thyrocytes, suggesting that at least in the thyroid, Taar1 may signal from the cilia at the apical plasma membrane domain of thyrocytes in situ, where it is exposed to the content of the follicle lumen containing putative Taar1 ligands. This study was designed to explore mouse Taar1 (mTaar1) trafficking, heterologously expressed in human and rat thyroid cell lines in order to establish an in vitro system in which Taar1 signaling from the cell surface can be studied in future. The results showed that chimeric mTaar1-EGFP traffics to the apical cell surface and localizes particularly to spherical structures of polarized thyroid cells, procilia, and primary cilia upon serum-starvation. Moreover, mTaar1-EGFP appears to form high molecular mass forms, possibly homodimers and tetramers, in stably expressing human thyroid cell lines. However, only monomeric mTaar1-EGFP was cell surface biotinylated in polarized human thyrocytes. In polarized rat thyrocytes, mTaar1-EGFP is retained in the endoplasmic reticulum, while cilia were reached by mTaar1-EGFP transiently co-expressed in combination with an HA-tagged construct of the related mTaar5. We conclude that Taar1 trafficking to cilia depends on their integrity. The results further suggest that an in vitro cell model was established that recapitulates Taar1 trafficking in thyrocytes in situ, in principle, and will enable studying Taar1 signaling in future, thus extending our general understanding of its potential significance for thyroid autoregulation.


1960 ◽  
Vol 20 (2) ◽  
pp. 83-NP ◽  
Author(s):  
W. J. IRVINE

SUMMARY Human thyroid cells were grown in tissue culture in media containing normal human serum, Hashimoto serum, and rabbit sera containing antibodies to purified human thyroglobulin and to crude thyroid extract, respectively. The thyroid cells grew equally well in all media, with the exception of the rabbit serum containing antibodies to crude thyroid extract. Intact thyroid cells obtained from tissue culture failed to fix Hashimoto antibodies in the presence of complement, whereas the constituents of disrupted thyroid cells gave a strongly positive complement-fixation test with Hashimoto serum. It is therefore suggested that the intact thyroid cell is impermeable to complement-fixing Hashimoto antibody. The evidence afforded by the present work adds further weight to the belief that Hashimoto's disease may not be due to a simple auto-immunizing process consequent upon the interaction of thyroid antigen and the known circulating auto-antibodies. Evidence in support of an alternative hypothesis involving 'cell-bound' antibodies with disruption of the follicular basement membrane is discussed.


2019 ◽  
Vol 25 (10) ◽  
pp. 3141-3151 ◽  
Author(s):  
Iñigo Landa ◽  
Nikita Pozdeyev ◽  
Christopher Korch ◽  
Laura A. Marlow ◽  
Robert C. Smallridge ◽  
...  

Author(s):  
M. Rotondi ◽  
F. Coperchini ◽  
G. Ricci ◽  
M. Denegri ◽  
L. Croce ◽  
...  

Abstract Purpose SARS-COV-2 is a pathogenic agent belonging to the coronavirus family, responsible for the current global world pandemic. Angiotensin-converting enzyme 2 (ACE-2) is the receptor for cellular entry of SARS-CoV-2. ACE-2 is a type I transmembrane metallo-carboxypeptidase involved in the Renin-Angiotensin pathway. By analyzing two independent databases, ACE-2 was identified in several human tissues including the thyroid. Although some cases of COVID-19-related subacute thyroiditis were recently described, direct proof for the expression of the ACE-2 mRNA in thyroid cells is still lacking. Aim of the present study was to investigate by RT-PCR whether the mRNA encoding for ACE-2 is present in human thyroid cells. Methods RT-PCR was performed on in vitro ex vivo study on thyroid tissue samples (15 patients undergoing thyroidectomy for benign thyroid nodules) and primary thyroid cell cultures. Results The ACE-2 mRNA was detected in all surgical thyroid tissue samples (n = 15). Compared with two reporter genes (GAPDH: 0.052 ± 0.0026 Cycles−1; β-actin: 0.044 ± 0.0025 Cycles−1; ACE-2: 0.035 ± 0.0024 Cycles−1), the mean level of transcript expression for ACE-2 mRNA was abundant. The expression of ACE-2 mRNA in follicular cells was confirmed by analyzing primary cultures of thyroid cells, which expressed the ACE-2 mRNA at levels similar to tissues. Conclusions The results of the present study demonstrate that the mRNA encoding for the ACE-2 receptor is expressed in thyroid follicular cells, making them a potential target for SARS-COV-2 entry. Future clinical studies in patients with COVID-19 will be required for increase our understanding of the thyroid repercussions of SARS-CoV-2 infection.


Thyroid ◽  
2013 ◽  
Vol 23 (3) ◽  
pp. 317-328 ◽  
Author(s):  
Geneviève Dom ◽  
Vanessa Chico Galdo ◽  
Maxime Tarabichi ◽  
Gil Tomás ◽  
Aline Hébrant ◽  
...  

2019 ◽  
Vol 25 (22) ◽  
pp. 6883-6884
Author(s):  
Iñigo Landa ◽  
Nikita Pozdeyev ◽  
Jeffrey A. Knauf ◽  
Bryan R. Haugen ◽  
James A. Fagin ◽  
...  

2001 ◽  
Vol 169 (2) ◽  
pp. 417-424 ◽  
Author(s):  
M Iitaka ◽  
S Kakinuma ◽  
S Fujimaki ◽  
I Oosuga ◽  
T Fujita ◽  
...  

Zinc at concentrations of 150, microM or higher induced necrosis as well as apoptosis in thyroid cancer cell lines. Necrosis was induced by zinc in a dose-dependent manner, whereas apoptosis did not increase at higher concentrations of zinc. The expression of the antiapoptotic protein phosphorylated Bad was markedly increased, whereas the expression of the proapoptotic proteins Bax and Bad decreased following Zn(2+) exposure. Zn(2+) induced rapid degradation of IkappaB, and an increase in the binding of nuclear transcription factor-kappaB (NF-kappaB). These observations indicate that antiapoptotic pathways were activated in thyroid cancer cells following exposure to Zn(2+). This may be a self-defence mechanism against apoptosis and may underlie the general resistance of thyroid cancer cells to apoptotic stimuli. Zinc may be a potential cytotoxic agent for the treatment of thyroid cancer.


2012 ◽  
Vol 214 (2) ◽  
pp. 207-216 ◽  
Author(s):  
Joanna Klubo-Gwiezdzinska ◽  
Kirk Jensen ◽  
Andrew Bauer ◽  
Aneeta Patel ◽  
John Costello ◽  
...  

The translocator protein (TSPO), formerly known as a peripheral benzodiazepine receptor, exerts pro-apoptotic function via regulation of mitochondrial membrane potential. We examined TSPO expression in human thyroid tumors (25 follicular adenomas (FA), 15 follicular cancers (FC), and 70 papillary cancers (PC)). The role of TSPO in the regulation of cell growth, migration, and apoptosis was examined in thyroid cancer cell lines after TSPO knockdown with siRNA and after treatment with TSPO antagonist (PK11195). Compared with normal thyroid, the level of TSPO expression was increased in FA, FC, and PC in 24, 26.6, and 55.7% of cases respectively. Thyroid cancer cell lines demonstrated variable levels of TSPO expression, without specific association with thyroid oncogene mutations. Treatment with inhibitors of PI3K/AKT or MEK/ERK signaling was not associated with changes in TSPO expression. Treatment with histone deacetylase inhibitor (valproic acid) increased TSPO expression in TSPO-deficient cell lines (FTC236 cells). TSPO gene silencing or treatment with PK11195 did not affect thyroid cancer cell growth and migration but prevented depolarization of mitochondrial membranes induced by oxidative stress. Induction of TSPO expression by valproic acid was associated with increased sensitivity of FTC236 to oxidative stress-inducible apoptosis. Overall, we showed that TSPO expression is frequently increased in PC. In vitro data suggested the role of epigenetic mechanism(s) in the regulation of TSPO in thyroid cells. Implication of TSPO in the thyroid cancer cell response to oxidative stress suggested its potential role in the regulation of thyroid cancer cell response to treatment with radioiodine and warrants further investigation.


Sign in / Sign up

Export Citation Format

Share Document